| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.07.21.1159.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[Cos[b z^2 + d z + e] Cos[c z^2 + g]^v, z] == 
  (1/Sqrt[b]) (2^(-(1/2) - v) Sqrt[Pi] Binomial[v, v/2] (1 - Mod[v, 2]) 
     (Cos[d^2/(4 b) - e] FresnelC[(d + 2 b z)/(Sqrt[b] Sqrt[2 Pi])] + 
      FresnelS[(d + 2 b z)/(Sqrt[b] Sqrt[2 Pi])] Sin[d^2/(4 b) - e])) + 
   2^(-(1/2) - v) Sqrt[Pi] Sum[Binomial[v, s] 
      ((Cos[e - 2 g s + g v + d^2/(4 (-b + 2 c s - c v))] 
          FresnelC[(-d + 2 (-b + 2 c s - c v) z)/(Sqrt[2 Pi] 
             Sqrt[-b + 2 c s - c v])] + 
         FresnelS[(-d + 2 (-b + 2 c s - c v) z)/(Sqrt[2 Pi] 
             Sqrt[-b + 2 c s - c v])] Sin[e - 2 g s + g v + 
            d^2/(4 (-b + 2 c s - c v))])/Sqrt[-b + 2 c s - c v] + 
       (Cos[e + 2 g s - g v + d^2/(4 (-b - 2 c s + c v))] 
          FresnelC[(-d + 2 (-b - 2 c s + c v) z)/(Sqrt[2 Pi] 
             Sqrt[-b - 2 c s + c v])] + 
         FresnelS[(-d + 2 (-b - 2 c s + c v) z)/(Sqrt[2 Pi] 
             Sqrt[-b - 2 c s + c v])] Sin[e + 2 g s - g v + 
            d^2/(4 (-b - 2 c s + c v))])/Sqrt[-b - 2 c s + c v]), 
     {s, 0, Floor[(1/2) (-1 + v)]}] /; Element[v, Integers] && v > 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["d", " ", "z"]], "+", "e"]], "]"]], SuperscriptBox[RowBox[List["Cos", "[", RowBox[List[RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "+", "g"]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", SqrtBox["b"]], RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "v"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox[SuperscriptBox["d", "2"], RowBox[List["4", " ", "b"]]], "-", "e"]], "]"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "b", " ", "z"]]]], RowBox[List[SqrtBox["b"], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["FresnelS", "[", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "b", " ", "z"]]]], RowBox[List[SqrtBox["b"], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox[SuperscriptBox["d", "2"], RowBox[List["4", " ", "b"]]], "-", "e"]], "]"]]]]]], ")"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "v"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "s"]], "+", RowBox[List["g", " ", "v"]], "+", FractionBox[SuperscriptBox["d", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]]]]]]], "]"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", "z"]]]], RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", "z"]]]], RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "s"]], "+", RowBox[List["g", " ", "v"]], "+", FractionBox[SuperscriptBox["d", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]]]]]]], "]"]]]]]], ")"]], "/", RowBox[List["(", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "s"]], "-", RowBox[List["g", " ", "v"]], "+", FractionBox[SuperscriptBox["d", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]], "]"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", "z"]]]], RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", "z"]]]], RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "s"]], "-", RowBox[List["g", " ", "v"]], "+", FractionBox[SuperscriptBox["d", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]], "]"]]]]]], ")"]], "/", RowBox[List["(", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]]], ")"]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> cos </mi>  <mi> v </mi>  </msup>  <mo> ( </mo>  <mrow>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mi> g </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> v </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> v </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox[FractionBox["v", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> v </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`v </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <msqrt>  <mi> b </mi>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> d </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mfrac>  <mo> - </mo>  <mi> e </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <semantics>  <mi> C </mi>  <annotation encoding='Mathematica'> TagBox["C", FresnelC] </annotation>  </semantics>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mrow>  <msqrt>  <mi> b </mi>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <semantics>  <mi> S </mi>  <annotation encoding='Mathematica'> TagBox["S", FresnelS] </annotation>  </semantics>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mrow>  <msqrt>  <mi> b </mi>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> d </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mfrac>  <mo> - </mo>  <mi> e </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> s </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> v </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> s </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox["s", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> d </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mi> e </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> g </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> g </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <semantics>  <mi> C </mi>  <annotation encoding='Mathematica'> TagBox["C", FresnelC] </annotation>  </semantics>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mrow>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <semantics>  <mi> S </mi>  <annotation encoding='Mathematica'> TagBox["S", FresnelS] </annotation>  </semantics>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mrow>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> d </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mi> e </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> g </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> g </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> d </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> g </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> g </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <semantics>  <mi> C </mi>  <annotation encoding='Mathematica'> TagBox["C", FresnelC] </annotation>  </semantics>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mrow>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <semantics>  <mi> S </mi>  <annotation encoding='Mathematica'> TagBox["S", FresnelS] </annotation>  </semantics>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mrow>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> d </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> g </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> g </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> v </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <ci> d </ci>  <ci> z </ci>  </apply>  <ci> e </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <ci> c </ci>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <ci> g </ci>  </apply>  </apply>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Binomial </ci>  <ci> v </ci>  <apply>  <times />  <ci> v </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`v </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> d </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> e </ci>  </apply>  </apply>  </apply>  <apply>  <ci> FresnelC </ci>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> FresnelS </ci>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <sin />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> d </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> e </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <sum />  <bvar>  <ci> s </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> v </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> Binomial </ci>  <ci> v </ci>  <ci> s </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> d </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> g </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> g </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> FresnelC </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> FresnelS </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <sin />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> d </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> g </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> g </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> d </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> g </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> g </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <ci> FresnelC </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> FresnelS </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <sin />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> d </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> g </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> g </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> v </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]], "+", RowBox[List["d_", " ", "z_"]], "+", "e_"]], "]"]], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List[RowBox[List["c_", " ", SuperscriptBox["z_", "2"]]], "+", "g_"]], "]"]], "v_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "v"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox[SuperscriptBox["d", "2"], RowBox[List["4", " ", "b"]]], "-", "e"]], "]"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "b", " ", "z"]]]], RowBox[List[SqrtBox["b"], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["FresnelS", "[", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "b", " ", "z"]]]], RowBox[List[SqrtBox["b"], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox[SuperscriptBox["d", "2"], RowBox[List["4", " ", "b"]]], "-", "e"]], "]"]]]]]], ")"]]]], SqrtBox["b"]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "v"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "s"]], "+", RowBox[List["g", " ", "v"]], "+", FractionBox[SuperscriptBox["d", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]]]]]]], "]"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", "z"]]]], RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", "z"]]]], RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "s"]], "+", RowBox[List["g", " ", "v"]], "+", FractionBox[SuperscriptBox["d", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]]]]]]], "]"]]]]]], SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "s"]], "-", RowBox[List["g", " ", "v"]], "+", FractionBox[SuperscriptBox["d", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]], "]"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", "z"]]]], RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", "z"]]]], RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "s"]], "-", RowBox[List["g", " ", "v"]], "+", FractionBox[SuperscriptBox["d", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]], "]"]]]]]], SqrtBox[RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "&&", RowBox[List["v", ">", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |