| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.07.21.1271.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[Cos[c z]^2/(a + b Cos[c z]^4), z] == 
 (-(I/(2 Sqrt[b] c))) (ArcTan[(Sqrt[a] Tan[c z])/Sqrt[a - I Sqrt[a] Sqrt[b]]]/
    Sqrt[a - I Sqrt[a] Sqrt[b]] - 
   ArcTan[(Sqrt[a] Tan[c z])/Sqrt[a + I Sqrt[a] Sqrt[b]]]/
    Sqrt[a + I Sqrt[a] Sqrt[b]]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], "2"], RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], "4"]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " "]], RowBox[List["2", " ", SqrtBox["b"], " ", "c"]]]]], RowBox[List["(", RowBox[List[FractionBox[RowBox[List["ArcTan", "[", FractionBox[RowBox[List[SqrtBox["a"], " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], SqrtBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"]]]]]]], "]"]], SqrtBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"]]]]]]], "-", FractionBox[RowBox[List["ArcTan", "[", FractionBox[RowBox[List[SqrtBox["a"], " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], SqrtBox[RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"]]]]]]], "]"]], SqrtBox[RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"]]]]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> cos </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> cos </mi>  <mn> 4 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mtext>   </mtext>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> tan </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <msqrt>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  </msqrt>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  </mrow>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> tan </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  </mrow>  </msqrt>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <apply>  <cos />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <cos />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <arctan />  <apply>  <times />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <tan />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <arctan />  <apply>  <times />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <tan />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["c_", " ", "z_"]], "]"]], "2"], RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["c_", " ", "z_"]], "]"]], "4"]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["ArcTan", "[", FractionBox[RowBox[List[SqrtBox["a"], " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], SqrtBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"]]]]]]], "]"]], SqrtBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"]]]]]]], "-", FractionBox[RowBox[List["ArcTan", "[", FractionBox[RowBox[List[SqrtBox["a"], " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], SqrtBox[RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"]]]]]]], "]"]], SqrtBox[RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"]]]]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox["b"], " ", "c"]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |