| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.07.21.1277.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[(Cos[e z] Cos[d z])/(a + b Cos[c z]^2), z] == 
 (1/(4 Sqrt[a] b Sqrt[a + b])) 
  (I ((1/(2 c + d - e)) (E^(I (2 c + d - e) z) 
      ((-(2 a + b + 2 Sqrt[a] Sqrt[a + b])) Hypergeometric2F1[
         (2 c + d - e)/(2 c), 1, (4 c + d - e)/(2 c), 
         -((b E^(2 I c z))/(2 a + b - 2 Sqrt[a] Sqrt[a + b]))] + 
       (2 a + b - 2 Sqrt[a] Sqrt[a + b]) Hypergeometric2F1[
         (2 c + d - e)/(2 c), 1, (4 c + d - e)/(2 c), 
         -((b E^(2 I c z))/(2 a + b + 2 Sqrt[a] Sqrt[a + b]))])) + 
    (1/(2 c - d + e)) (E^(I (2 c - d + e) z) 
      ((-(2 a + b + 2 Sqrt[a] Sqrt[a + b])) Hypergeometric2F1[
         (2 c - d + e)/(2 c), 1, (4 c - d + e)/(2 c), 
         -((b E^(2 I c z))/(2 a + b - 2 Sqrt[a] Sqrt[a + b]))] + 
       (2 a + b - 2 Sqrt[a] Sqrt[a + b]) Hypergeometric2F1[
         (2 c - d + e)/(2 c), 1, (4 c - d + e)/(2 c), 
         -((b E^(2 I c z))/(2 a + b + 2 Sqrt[a] Sqrt[a + b]))])) - 
    (1/(-2 c + d + e)) (E^(I (2 c - d - e) z) 
      ((-(2 a + b + 2 Sqrt[a] Sqrt[a + b])) Hypergeometric2F1[
         -((-2 c + d + e)/(2 c)), 1, -((-4 c + d + e)/(2 c)), 
         -((b E^(2 I c z))/(2 a + b - 2 Sqrt[a] Sqrt[a + b]))] + 
       (2 a + b - 2 Sqrt[a] Sqrt[a + b]) Hypergeometric2F1[
         -((-2 c + d + e)/(2 c)), 1, -((-4 c + d + e)/(2 c)), 
         -((b E^(2 I c z))/(2 a + b + 2 Sqrt[a] Sqrt[a + b]))])) + 
    (1/(2 c + d + e)) (E^(I (2 c + d + e) z) 
      ((-(2 a + b + 2 Sqrt[a] Sqrt[a + b])) Hypergeometric2F1[
         (2 c + d + e)/(2 c), 1, (4 c + d + e)/(2 c), 
         -((b E^(2 I c z))/(2 a + b - 2 Sqrt[a] Sqrt[a + b]))] + 
       (2 a + b - 2 Sqrt[a] Sqrt[a + b]) Hypergeometric2F1[
         (2 c + d + e)/(2 c), 1, (4 c + d + e)/(2 c), 
         -((b E^(2 I c z))/(2 a + b + 2 Sqrt[a] Sqrt[a + b]))])))) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], RowBox[List["Cos", "[", RowBox[List["d", " ", "z"]], "]"]]]], RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["4", " ", SqrtBox["a"], " ", "b", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]], RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", "e"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", "e"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", "e"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "+", "d", "-", "e"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", "e"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "+", "d", "-", "e"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["2", " ", "c"]], "-", "d", "+", "e"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "-", "d", "+", "e"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "-", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "-", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "-", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "-", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c"]], "+", "d", "+", "e"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "-", "d", "-", "e"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "+", "e"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "+", "e"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> cos </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> - </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> - </mo>  <mi> e </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> - </mo>  <mi> e </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> - </mo>  <mi> e </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", "e"]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "+", "d", "-", "e"]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> - </mo>  <mi> e </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> - </mo>  <mi> e </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", "e"]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "+", "d", "-", "e"]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "-", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "-", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "-", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "-", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  <mo> - </mo>  <mi> e </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 4 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 4 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <cos />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <cos />  <apply>  <times />  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <cos />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> b </ci>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> e </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> e </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> e </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> e </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> e </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> e </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <ci> e </ci>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <ci> e </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <ci> e </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <ci> e </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <ci> e </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <ci> e </ci>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <ci> e </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <ci> e </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <ci> e </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <ci> e </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> e </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <ci> e </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -4 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <ci> e </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <ci> e </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -4 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <ci> e </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Cos", "[", RowBox[List["e_", " ", "z_"]], "]"]], " ", RowBox[List["Cos", "[", RowBox[List["d_", " ", "z_"]], "]"]]]], RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["c_", " ", "z_"]], "]"]], "2"]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", "e"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", "e"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "+", "d", "-", "e"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", "e"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "+", "d", "-", "e"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", "e"]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "-", "d", "+", "e"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "-", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "-", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "-", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "-", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["2", " ", "c"]], "-", "d", "+", "e"]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "-", "d", "-", "e"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c"]], "+", "d", "+", "e"]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "+", "e"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["4", " ", "c"]], "+", "d", "+", "e"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "+", "e"]]]]], ")"]]]], RowBox[List["4", " ", SqrtBox["a"], " ", "b", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |