|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.07.21.1330.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[1/((1 + Cos[c z])^2 Sqrt[a + b Cos[c z]]), z] ==
(Cos[(c z)/2] (-4 (a^2 - 2 a b - 3 b^2) Cos[(c z)/2]^3
Sqrt[(a + b Cos[c z])/(a + b)] EllipticE[(c z)/2, (2 b)/(a + b)] +
4 (a^2 - 3 a b + 2 b^2) Cos[(c z)/2]^3 Sqrt[(a + b Cos[c z])/(a + b)]
EllipticF[(c z)/2, (2 b)/(a + b)] +
(4 a^2 - 7 a b - 3 b^2 + 2 (a^2 - a b - 4 b^2) Cos[c z] +
(a - 3 b) b Cos[2 c z]) Sin[(c z)/2]))/(3 (a - b)^2 c (1 + Cos[c z])^2
Sqrt[a + b Cos[c z]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], "2"], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["2", " ", "a", " ", "b"]], "-", RowBox[List["3", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "3"], " ", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox[RowBox[List["c", " ", "z"]], "2"], ",", FractionBox[RowBox[List["2", " ", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["3", " ", "a", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "3"], " ", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[FractionBox[RowBox[List["c", " ", "z"]], "2"], ",", FractionBox[RowBox[List["2", " ", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["7", " ", "a", " ", "b"]], "-", RowBox[List["3", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["a", " ", "b"]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", RowBox[List["3", " ", "b"]]]], ")"]], " ", "b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], "2"], " ", "c", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], "2"], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ❘ </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> cos </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ❘ </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> cos </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> EllipticE </ci> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> EllipticF </ci> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7 </cn> <ci> b </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cos", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], ")"]], "2"], " ", SqrtBox[RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Cos", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["2", " ", "a", " ", "b"]], "-", RowBox[List["3", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "3"], " ", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox[RowBox[List["c", " ", "z"]], "2"], ",", FractionBox[RowBox[List["2", " ", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["3", " ", "a", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "3"], " ", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[FractionBox[RowBox[List["c", " ", "z"]], "2"], ",", FractionBox[RowBox[List["2", " ", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["7", " ", "a", " ", "b"]], "-", RowBox[List["3", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["a", " ", "b"]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", RowBox[List["3", " ", "b"]]]], ")"]], " ", "b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]]]], ")"]]]], RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], "2"], " ", "c", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], "2"], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|