Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cos






Mathematica Notation

Traditional Notation









Elementary Functions > Cos[z] > Integration > Indefinite integration > Involving functions of the direct function and a power function > Involving products of the direct function and a power function > Involving products of two direct functions and a power function > Involving zn cos(b zr+d z+e) cos(c zr+f z+g)





http://functions.wolfram.com/01.07.21.1537.01









  


  










Input Form





Integrate[z^n Cos[b z^2 + d z + e] Cos[c z^2 + f z + g], z] == ((-Sqrt[(-I) (b - c)]) Sqrt[(b + c)^2] E^((I (d^2 + 8 b e + 8 c e + 2 d f + f^2))/(4 (b + c))) Sum[2^(-n + q) (I (b - c))^(-(1/2) - n) ((-I) (d - f))^(n - q) (I (d - f + 2 b z - 2 c z))^(1 + q) (-((I (d - f + 2 b z - 2 c z)^2)/(b - c)))^((1/2) (-1 - q)) Binomial[n, q] Gamma[(1 + q)/2, -((I (d - f + 2 b z - 2 c z)^2)/ (4 (b - c)))], {q, 0, n}] - Sqrt[I (b - c)] Sqrt[(b + c)^2] E^((I (b (3 d^2 - 2 d f + 3 f^2) + 8 b^2 g + c (d^2 - 6 d f + f^2 - 8 c g)))/(4 (b - c) (b + c))) Sum[2^(-n + q) ((-I) (b - c))^(-(1/2) - n) (I (d - f))^(n - q) ((-I) (d - f + 2 b z - 2 c z))^(1 + q) ((I (d - f + 2 b z - 2 c z)^2)/(b - c))^((1/2) (-1 - q)) Binomial[n, q] Gamma[(1 + q)/2, (I (d - f + 2 b z - 2 c z)^2)/ (4 (b - c))], {q, 0, n}] - Sqrt[(b - c)^2] Sqrt[(-I) (b + c)] E^((I (d^2 - 8 c e - 2 d f + f^2 - 8 c g + 8 b (e + g)))/(4 (b - c))) Sum[2^(-n + q) (I (b + c))^(-(1/2) - n) ((-I) (d + f))^(n - q) (I (d + f + 2 (b + c) z))^(1 + q) (-((I (d + f + 2 (b + c) z)^2)/(b + c)))^((1/2) (-1 - q)) Binomial[n, q] Gamma[(1 + q)/2, -((I (d + f + 2 (b + c) z)^2)/ (4 (b + c)))], {q, 0, n}] - Sqrt[(b - c)^2] Sqrt[I (b + c)] E^((I ((-c) (d^2 + 6 d f + f^2) + b (3 d^2 + 2 d f + 3 f^2)))/ (4 (b - c) (b + c))) Sum[2^(-n + q) ((-I) (b + c))^(-(1/2) - n) (I (d + f))^(n - q) ((-I) (d + f + 2 (b + c) z))^(1 + q) ((I (d + f + 2 (b + c) z)^2)/(b + c))^((1/2) (-1 - q)) Binomial[n, q] Gamma[(1 + q)/2, (I (d + f + 2 (b + c) z)^2)/(4 (b + c))], {q, 0, n}])/E^((I (b (d^2 + f^2) + 2 b^2 (e + g) - 2 c (d f + c (e + g))))/(2 (b - c) (b + c)))/ (8 Sqrt[(b - c)^2] Sqrt[(b + c)^2]) /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], RowBox[List["Cos", "[", RowBox[List[RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["d", " ", "z"]], "+", "e"]], "]"]], RowBox[List["Cos", "[", RowBox[List[RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["f", " ", "z"]], "+", "g"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "+", SuperscriptBox["f", "2"]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["e", "+", "g"]], ")"]]]], "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["d", " ", "f"]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List["e", "+", "g"]], ")"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]]]]]]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], "2"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "+", RowBox[List["8", " ", "b", " ", "e"]], "+", RowBox[List["8", " ", "c", " ", "e"]], "+", RowBox[List["2", " ", "d", " ", "f"]], "+", SuperscriptBox["f", "2"]]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["d", "-", "f"]], ")"]]]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["2", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["2", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["b", "-", "c"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["2", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]]]]]]]]], "]"]]]]]]]], "-", RowBox[List[SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]]]]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], "2"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["d", "2"]]], "-", RowBox[List["2", " ", "d", " ", "f"]], "+", RowBox[List["3", " ", SuperscriptBox["f", "2"]]]]], ")"]]]], "+", RowBox[List["8", " ", SuperscriptBox["b", "2"], " ", "g"]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", RowBox[List["6", " ", "d", " ", "f"]], "+", SuperscriptBox["f", "2"], "-", RowBox[List["8", " ", "c", " ", "g"]]]], ")"]]]]]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "-", "f"]], ")"]]]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["2", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["2", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["b", "-", "c"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["2", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]]]]]]], "]"]]]]]]]], "-", RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], "2"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", RowBox[List["8", " ", "c", " ", "e"]], "-", RowBox[List["2", " ", "d", " ", "f"]], "+", SuperscriptBox["f", "2"], "-", RowBox[List["8", " ", "c", " ", "g"]], "+", RowBox[List["8", " ", "b", " ", RowBox[List["(", RowBox[List["e", "+", "g"]], ")"]]]]]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["d", "+", "f"]], ")"]]]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", "z"]]]], ")"]], "2"]]], RowBox[List["b", "+", "c"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]]]]]], "]"]]]]]]]], "-", RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], "2"]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "c"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "+", RowBox[List["6", " ", "d", " ", "f"]], "+", SuperscriptBox["f", "2"]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["2", " ", "d", " ", "f"]], "+", RowBox[List["3", " ", SuperscriptBox["f", "2"]]]]], ")"]]]]]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", "f"]], ")"]]]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", "z"]]]], ")"]], "2"]]], RowBox[List["b", "+", "c"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]]]], "]"]]]]]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["8", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], "2"]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], "2"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> e </mi> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> f </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> e </mi> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> &#8290; </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> g </mi> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> f </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> + </mo> <msup> <mi> f </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> g </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> q </mi> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> q </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> q </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity]], List[TagBox[&quot;q&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> + </mo> <msup> <mi> f </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> q </mi> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> q </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> q </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity]], List[TagBox[&quot;q&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> f </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> + </mo> <msup> <mi> f </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> q </mi> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> q </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> q </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity]], List[TagBox[&quot;q&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> + </mo> <msup> <mi> f </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> g </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> e </mi> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> q </mi> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> q </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> q </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity]], List[TagBox[&quot;q&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> <ci> e </ci> </apply> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> <ci> g </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> e </ci> <ci> g </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <plus /> <apply> <times /> <ci> d </ci> <ci> f </ci> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> e </ci> <ci> g </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> g </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> d </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <ci> f </ci> <ci> d </ci> </apply> </apply> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> c </ci> <ci> g </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> q </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> d </ci> </apply> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> b </ci> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> c </ci> <ci> e </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> q </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <ci> f </ci> <ci> d </ci> </apply> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> d </ci> <ci> f </ci> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> q </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> d </ci> </apply> </apply> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> c </ci> <ci> e </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> c </ci> <ci> g </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> b </ci> <apply> <plus /> <ci> e </ci> <ci> g </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> d </ci> <ci> f </ci> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> q </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]], "+", RowBox[List["d_", " ", "z_"]], "+", "e_"]], "]"]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["c_", " ", SuperscriptBox["z_", "2"]]], "+", RowBox[List["f_", " ", "z_"]], "+", "g_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "+", SuperscriptBox["f", "2"]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["e", "+", "g"]], ")"]]]], "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["d", " ", "f"]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List["e", "+", "g"]], ")"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]]]]]]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], "2"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "+", RowBox[List["8", " ", "b", " ", "e"]], "+", RowBox[List["8", " ", "c", " ", "e"]], "+", RowBox[List["2", " ", "d", " ", "f"]], "+", SuperscriptBox["f", "2"]]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["d", "-", "f"]], ")"]]]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["2", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["2", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["b", "-", "c"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["2", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]]]]]]]]], "]"]]]]]]]], "-", RowBox[List[SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]]]]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], "2"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["d", "2"]]], "-", RowBox[List["2", " ", "d", " ", "f"]], "+", RowBox[List["3", " ", SuperscriptBox["f", "2"]]]]], ")"]]]], "+", RowBox[List["8", " ", SuperscriptBox["b", "2"], " ", "g"]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", RowBox[List["6", " ", "d", " ", "f"]], "+", SuperscriptBox["f", "2"], "-", RowBox[List["8", " ", "c", " ", "g"]]]], ")"]]]]]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "-", "f"]], ")"]]]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["2", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["2", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["b", "-", "c"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["2", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]]]]]]], "]"]]]]]]]], "-", RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], "2"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", RowBox[List["8", " ", "c", " ", "e"]], "-", RowBox[List["2", " ", "d", " ", "f"]], "+", SuperscriptBox["f", "2"], "-", RowBox[List["8", " ", "c", " ", "g"]], "+", RowBox[List["8", " ", "b", " ", RowBox[List["(", RowBox[List["e", "+", "g"]], ")"]]]]]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["d", "+", "f"]], ")"]]]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", "z"]]]], ")"]], "2"]]], RowBox[List["b", "+", "c"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]]]]]], "]"]]]]]]]], "-", RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], "2"]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "c"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "+", RowBox[List["6", " ", "d", " ", "f"]], "+", SuperscriptBox["f", "2"]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["2", " ", "d", " ", "f"]], "+", RowBox[List["3", " ", SuperscriptBox["f", "2"]]]]], ")"]]]]]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", "f"]], ")"]]]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", "z"]]]], ")"]], "2"]]], RowBox[List["b", "+", "c"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]]]], "]"]]]]]]]]]], ")"]]]], RowBox[List["8", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], "2"]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], "2"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18