Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cos






Mathematica Notation

Traditional Notation









Elementary Functions > Cos[z] > Integration > Indefinite integration > Involving functions of the direct function and a power function > Involving rational functions of the direct function and a power function > Involving z cos(c z)/a+b cos(2c z)





http://functions.wolfram.com/01.07.21.1669.01









  


  










Input Form





Integrate[(z Cos[c z])/(a + b Cos[2 c z]), z] == (-8 I ArcSin[(1/2) Sqrt[2 + (Sqrt[2] Sqrt[a + b])/Sqrt[b]]] ArcTan[((-2 Sqrt[b] + Sqrt[2] Sqrt[a + b]) Tan[(1/4) (Pi - 2 c z)])/ Sqrt[2 a - 2 b]] + 8 I ArcSin[(1/2) Sqrt[2 - (Sqrt[2] Sqrt[a + b])/Sqrt[b]]] ArcTan[((2 Sqrt[b] + Sqrt[2] Sqrt[a + b]) Tan[(1/4) (Pi - 2 c z)])/ Sqrt[2 a - 2 b]] - (Pi - 2 c z + 4 ArcSin[(1/2) Sqrt[2 + (Sqrt[2] Sqrt[a + b])/Sqrt[b]]]) Log[(1/2) (2 - (I Sqrt[2] (Sqrt[a - b] - Sqrt[a + b]))/ (E^(I c z) Sqrt[b]))] + (Pi - 2 c z + 4 ArcSin[(1/2) Sqrt[2 - (Sqrt[2] Sqrt[a + b])/Sqrt[b]]]) Log[(1/2) (2 + (I Sqrt[2] (Sqrt[a - b] - Sqrt[a + b]))/ (E^(I c z) Sqrt[b]))] + (Pi - 2 c z - 4 ArcSin[(1/2) Sqrt[2 - (Sqrt[2] Sqrt[a + b])/Sqrt[b]]]) Log[(1/2) (2 - (I Sqrt[2] (Sqrt[a - b] + Sqrt[a + b]))/ (E^(I c z) Sqrt[b]))] - (Pi - 2 c z - 4 ArcSin[(1/2) Sqrt[2 + (Sqrt[2] Sqrt[a + b])/Sqrt[b]]]) Log[(1/2) (2 + (I Sqrt[2] (Sqrt[a - b] + Sqrt[a + b]))/ (E^(I c z) Sqrt[b]))] - (Pi - 2 c z) Log[Sqrt[2] Sqrt[a + b] - 2 Sqrt[b] Sin[c z]] + (Pi - 2 c z) Log[Sqrt[2] Sqrt[a + b] + 2 Sqrt[b] Sin[c z]] + 2 c z (-Log[Sqrt[2] Sqrt[a + b] - 2 Sqrt[b] Sin[c z]] + Log[Sqrt[2] Sqrt[a + b] + 2 Sqrt[b] Sin[c z]]) + 2 I (PolyLog[2, (I (Sqrt[a - b] - Sqrt[a + b]))/ (E^(I c z) (Sqrt[2] Sqrt[b]))] + PolyLog[2, -((I (Sqrt[a - b] + Sqrt[a + b]))/(E^(I c z) (Sqrt[2] Sqrt[b])))]) - 2 I (PolyLog[2, -((I (Sqrt[a - b] - Sqrt[a + b]))/ (E^(I c z) (Sqrt[2] Sqrt[b])))] + PolyLog[2, (I (Sqrt[a - b] + Sqrt[a + b]))/ (E^(I c z) (Sqrt[2] Sqrt[b]))]))/(4 Sqrt[2] Sqrt[b] Sqrt[a + b] c^2)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["z", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", "c", " ", "z"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "+", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], SqrtBox["b"]]]]]]], "]"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["b"]]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "-", RowBox[List["2", " ", "b"]]]]]], "]"]]]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "-", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], SqrtBox["b"]]]]]]], "]"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["b"]]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "-", RowBox[List["2", " ", "b"]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]], "+", RowBox[List["4", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "+", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], SqrtBox["b"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], "-", SqrtBox[RowBox[List["a", "+", "b"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]]]], SqrtBox["b"]]]], ")"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]], "+", RowBox[List["4", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "-", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], SqrtBox["b"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], "-", SqrtBox[RowBox[List["a", "+", "b"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]]]], SqrtBox["b"]]]], ")"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]], "-", RowBox[List["4", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "-", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], SqrtBox["b"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], "+", SqrtBox[RowBox[List["a", "+", "b"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]]]], SqrtBox["b"]]]], ")"]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]], "-", RowBox[List["4", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "+", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], SqrtBox["b"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], "+", SqrtBox[RowBox[List["a", "+", "b"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]]]], SqrtBox["b"]]]], ")"]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], "-", RowBox[List["2", " ", SqrtBox["b"], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], "+", RowBox[List["2", " ", SqrtBox["b"], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]]]], "+", RowBox[List["2", " ", "c", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], "-", RowBox[List["2", " ", SqrtBox["b"], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], "+", RowBox[List["2", " ", SqrtBox["b"], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]]]], ")"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], "-", SqrtBox[RowBox[List["a", "+", "b"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]]]], RowBox[List[SqrtBox["2"], " ", SqrtBox["b"]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], "+", SqrtBox[RowBox[List["a", "+", "b"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]]]], RowBox[List[SqrtBox["2"], " ", SqrtBox["b"]]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], "-", SqrtBox[RowBox[List["a", "+", "b"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]]]], RowBox[List[SqrtBox["2"], " ", SqrtBox["b"]]]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], "+", SqrtBox[RowBox[List["a", "+", "b"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]]]], RowBox[List[SqrtBox["2"], " ", SqrtBox["b"]]]]]], "]"]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["4", " ", SqrtBox["2"], " ", SqrtBox["b"], " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SuperscriptBox["c", "2"]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 8 </mn> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <msqrt> <mi> b </mi> </msqrt> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <msqrt> <mi> b </mi> </msqrt> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <msqrt> <mi> b </mi> </msqrt> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <msqrt> <mi> b </mi> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <msqrt> <mi> b </mi> </msqrt> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <msqrt> <mi> b </mi> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <msqrt> <mi> b </mi> </msqrt> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <msqrt> <mi> b </mi> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <msqrt> <mi> b </mi> </msqrt> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <msqrt> <mi> b </mi> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <ci> z </ci> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -8 </cn> <imaginaryi /> <apply> <arcsin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <arctan /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <tan /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <imaginaryi /> <apply> <arcsin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <arctan /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <tan /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <arcsin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <arcsin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <arcsin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <arcsin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> <apply> <plus /> <apply> <ln /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <plus /> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <plus /> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["z_", " ", RowBox[List["Cos", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c_", " ", "z_"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "+", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], SqrtBox["b"]]]]]]], "]"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["b"]]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "-", RowBox[List["2", " ", "b"]]]]]], "]"]]]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "-", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], SqrtBox["b"]]]]]]], "]"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["b"]]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "-", RowBox[List["2", " ", "b"]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]], "+", RowBox[List["4", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "+", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], SqrtBox["b"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], "-", SqrtBox[RowBox[List["a", "+", "b"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]]]], SqrtBox["b"]]]], ")"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]], "+", RowBox[List["4", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "-", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], SqrtBox["b"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], "-", SqrtBox[RowBox[List["a", "+", "b"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]]]], SqrtBox["b"]]]], ")"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]], "-", RowBox[List["4", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "-", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], SqrtBox["b"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], "+", SqrtBox[RowBox[List["a", "+", "b"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]]]], SqrtBox["b"]]]], ")"]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]], "-", RowBox[List["4", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "+", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], SqrtBox["b"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], "+", SqrtBox[RowBox[List["a", "+", "b"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]]]], SqrtBox["b"]]]], ")"]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], "-", RowBox[List["2", " ", SqrtBox["b"], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], "+", RowBox[List["2", " ", SqrtBox["b"], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]]]], "+", RowBox[List["2", " ", "c", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], "-", RowBox[List["2", " ", SqrtBox["b"], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], "+", RowBox[List["2", " ", SqrtBox["b"], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]]]], ")"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], "-", SqrtBox[RowBox[List["a", "+", "b"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]]]], RowBox[List[SqrtBox["2"], " ", SqrtBox["b"]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], "+", SqrtBox[RowBox[List["a", "+", "b"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]]]], RowBox[List[SqrtBox["2"], " ", SqrtBox["b"]]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], "-", SqrtBox[RowBox[List["a", "+", "b"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]]]], RowBox[List[SqrtBox["2"], " ", SqrtBox["b"]]]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], "+", SqrtBox[RowBox[List["a", "+", "b"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]]]], RowBox[List[SqrtBox["2"], " ", SqrtBox["b"]]]]]], "]"]]]], ")"]]]]]], RowBox[List["4", " ", SqrtBox["2"], " ", SqrtBox["b"], " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SuperscriptBox["c", "2"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18