| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.07.21.1749.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[E^(d z + e) Cos[c Sqrt[z] + f z + g]^v, z] == 
  (E^(e + d z) Binomial[v, v/2] (1 - Mod[v, 2]))/(2^v d) + 
   Sum[Binomial[v, k] (E^((1/2) (2 e + 4 I g k - 2 I g v) + 
          (2 I c k - I c v) Sqrt[z] + (d + 2 I f k - I f v) z)/
        (d + 2 I f k - I f v) + E^((1/2) (2 e - 4 I g k + 2 I g v) + 
          (-2 I c k + I c v) Sqrt[z] + (d - 2 I f k + I f v) z)/
        (d - 2 I f k + I f v) - 
       (E^(e + 2 I g k + (c^2 (2 k - v)^2)/(4 (d + I f (2 k - v))) - I g v) 
         Sqrt[Pi] (2 I c k - I c v) Erfi[(I c (2 k - v) + 
            2 (d + 2 I f k - I f v) Sqrt[z])/(2 Sqrt[d + 2 I f k - I f v])])/
        (2 (d + 2 I f k - I f v)^(3/2)) - 
       (I c E^(e - 2 I g k + I g v + (c^2 (-2 k + v)^2)/
            (4 (d + I f (-2 k + v)))) Sqrt[Pi] (-2 k + v) 
         Erfi[(I c (-2 k + v) + 2 (d - 2 I f k + I f v) Sqrt[z])/
           (2 Sqrt[d + I f (-2 k + v)])])/(2 (d - 2 I f k + I f v)^(3/2))), 
     {k, 0, Floor[(1/2) (-1 + v)]}]/2^v /; Element[v, Integers] && v > 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["d", " ", "z"]], "+", "e"]]], SuperscriptBox[RowBox[List["Cos", "[", RowBox[List[RowBox[List["c", " ", SqrtBox["z"]]], "+", RowBox[List["f", " ", "z"]], "+", "g"]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "v"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["d", " ", "z"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], "d"], "+", RowBox[List[SuperscriptBox["2", RowBox[List["-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "e"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "g", " ", "k"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "v"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "e"]], "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", "g", " ", "k"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "v"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "k"]], "+", FractionBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "v"]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "v"]], ")"]]]]]], ")"]]]]], "-", RowBox[List["\[ImaginaryI]", " ", "g", " ", "v"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "c", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "g", " ", "v"]], "+", FractionBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]]], ")"]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mi> e </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> cos </mi>  <mi> v </mi>  </msup>  <mo> ( </mo>  <mrow>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mi> g </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mtext>   </mtext>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> v </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> g </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> g </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msup>  <mrow>  <mi> d </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> g </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> g </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> erfi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mfrac>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> g </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> g </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msup>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mi> e </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> g </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> g </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> erfi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mfrac>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> e </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> v </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> v </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox[FractionBox["v", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> v </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`v </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mi> d </mi>  </mfrac>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> v </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <ci> d </ci>  <ci> z </ci>  </apply>  <ci> e </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> c </ci>  </apply>  <apply>  <times />  <ci> f </ci>  <ci> z </ci>  </apply>  <ci> g </ci>  </apply>  </apply>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> v </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> Binomial </ci>  <ci> v </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <ci> v </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <imaginaryi />  <ci> g </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> g </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> f </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  <ci> v </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> f </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  <ci> v </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <ci> f </ci>  <imaginaryi />  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> g </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> g </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Erfi </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <ci> c </ci>  <imaginaryi />  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> f </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <ci> f </ci>  <imaginaryi />  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> f </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  <ci> v </ci>  </apply>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <imaginaryi />  <ci> g </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> g </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> f </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> f </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <ci> f </ci>  <imaginaryi />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> g </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> g </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Erfi </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <ci> c </ci>  <imaginaryi />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> f </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> f </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> f </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <plus />  <ci> e </ci>  <apply>  <times />  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> v </ci>  <apply>  <times />  <ci> v </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`v </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> d </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> v </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["d_", " ", "z_"]], "+", "e_"]]], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List[RowBox[List["c_", " ", SqrtBox["z_"]]], "+", RowBox[List["f_", " ", "z_"]], "+", "g_"]], "]"]], "v_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "v"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["d", " ", "z"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], "d"], "+", RowBox[List[SuperscriptBox["2", RowBox[List["-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "e"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "g", " ", "k"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "v"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "e"]], "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", "g", " ", "k"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "v"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "k"]], "+", FractionBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "v"]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "v"]], ")"]]]]]], ")"]]]]], "-", RowBox[List["\[ImaginaryI]", " ", "g", " ", "v"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]]]]]], "]"]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "c", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "g", " ", "v"]], "+", FractionBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]]]]]], "]"]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "f", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "&&", RowBox[List["v", ">", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |