Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cos






Mathematica Notation

Traditional Notation









Elementary Functions > Cos[z] > Integration > Indefinite integration > Involving functions of the direct function and trigonometric functions > Involving rational functions of the direct function and trigonometric functions > Involving rational functions of sin > Involving (a+b sin(e z)+c cos(e z))-n





http://functions.wolfram.com/01.07.21.2244.01









  


  










Input Form





Integrate[(A + B Sin[e z] + C Cos[e z])/(a + b Sin[e z] + b Cos[e z]), z] == (1/(2 b)) ((B + C) z - (1/(Sqrt[a^2 - 2 b^2] e)) ((1 - I) (-1)^(1/4) Sqrt[2] (-2 A b + a (B + C)) ArcTan[(b + (a - b) Tan[(e z)/2])/ Sqrt[a^2 - 2 b^2]]) + ((-B + C) Log[a + b Cos[e z] + b Sin[e z]])/e)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["A", "+", RowBox[List["B", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["C", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", " ", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", " ", "b"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["B", "+", "C"]], ")"]], " ", "z"]], "-", RowBox[List[FractionBox["1", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["2", " ", SuperscriptBox["b", "2"]]]]]], " ", "e"]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "A", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["B", "+", "C"]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Tan", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]]]], SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["2", " ", SuperscriptBox["b", "2"]]]]]]], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "B"]], "+", "C"]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], "]"]]]], "e"]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mi> A </mi> <mo> + </mo> <mrow> <mi> B </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> C </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> B </mi> <mo> + </mo> <mi> C </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> C </mi> <mo> - </mo> <mi> B </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> e </mi> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> B </mi> <mo> + </mo> <mi> C </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> A </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mi> e </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <plus /> <ci> A </ci> <apply> <times /> <ci> B </ci> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> C </ci> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> B </ci> <ci> C </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> C </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> B </ci> </apply> </apply> <apply> <ln /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='complex-cartesian'> 1 <sep /> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> B </ci> <ci> C </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> A </ci> <ci> b </ci> </apply> </apply> </apply> <apply> <arctan /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <tan /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["A_", "+", RowBox[List["B_", " ", RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]]]], "+", RowBox[List["C", " ", RowBox[List["Cos", "[", RowBox[List["e_", " ", "z_"]], "]"]]]]]], RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]]]], "+", RowBox[List["b_", " ", RowBox[List["Cos", "[", RowBox[List["e_", " ", "z_"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["B", "+", "C"]], ")"]], " ", "z"]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "A", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["B", "+", "C"]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Tan", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]]]], SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["2", " ", SuperscriptBox["b", "2"]]]]]]], "]"]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["2", " ", SuperscriptBox["b", "2"]]]]]], " ", "e"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "B"]], "+", "C"]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], "]"]]]], "e"]]], RowBox[List["2", " ", "b"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18