Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cos






Mathematica Notation

Traditional Notation









Elementary Functions > Cos[z] > Integration > Indefinite integration > Involving functions of the direct function and trigonometric functions > Involving rational functions of the direct function and trigonometric functions > Involving rational functions of sin > Involving (a+b sin(e z)+c cos(e z))-n





http://functions.wolfram.com/01.07.21.2247.01









  


  










Input Form





Integrate[(A + B Sin[z] + C Cos[z])/((a + b Sin[z] + c Cos[z]) (d + e Sin[z] + f Cos[z])), z] == (-((1/Sqrt[-a^2 + b^2 + c^2]) (2 ((-a) (b B + c C) d - (B c - b C) (c e - b f) + a^2 (B e + C f) + A (b^2 d - a b e + c (c d - a f))) ArcTanh[(b + (a - c) Tan[z/2])/ Sqrt[-a^2 + b^2 + c^2]])) - (1/Sqrt[-d^2 + e^2 + f^2]) (2 (c (C (d^2 - e^2) - A d f + B e f) + b ((-A) d e + C e f + B (d^2 - f^2)) + a ((-B) d e - C d f + A (e^2 + f^2))) ArcTanh[(e + (d - f) Tan[z/2])/Sqrt[-d^2 + e^2 + f^2]]) - (B c d - b C d - A c e + a C e + A b f - a B f) Log[a + c Cos[z] + b Sin[z]] + (B c d - b C d - A c e + a C e + A b f - a B f) Log[d + f Cos[z] + e Sin[z]])/(c^2 (d^2 - e^2) - 2 a c d f + b (-2 a d e + 2 c e f) + b^2 (d^2 - f^2) + a^2 (e^2 + f^2))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["A", "+", RowBox[List["B", " ", RowBox[List["Sin", "[", "z", "]"]]]], "+", RowBox[List["C", " ", RowBox[List["Cos", "[", "z", "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", "z", "]"]]]], "+", RowBox[List["c", " ", RowBox[List["Cos", "[", "z", "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["e", " ", RowBox[List["Sin", "[", "z", "]"]]]], "+", RowBox[List["f", " ", RowBox[List["Cos", "[", "z", "]"]]]]]], ")"]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]]]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "B"]], "+", RowBox[List["c", " ", "C"]]]], ")"]], " ", "d"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["B", " ", "c"]], "-", RowBox[List["b", " ", "C"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", "e"]], "-", RowBox[List["b", " ", "f"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["B", " ", "e"]], "+", RowBox[List["C", " ", "f"]]]], ")"]]]], "+", RowBox[List["A", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "2"], " ", "d"]], "-", RowBox[List["a", " ", "b", " ", "e"]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", "d"]], "-", RowBox[List["a", " ", "f"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], " ", RowBox[List["Tan", "[", FractionBox["z", "2"], "]"]]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]]]], "]"]]]], ")"]]]]]], "-", RowBox[List[FractionBox["1", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["d", "2"]]], "+", SuperscriptBox["e", "2"], "+", SuperscriptBox["f", "2"]]]]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["C", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]]]], "-", RowBox[List["A", " ", "d", " ", "f"]], "+", RowBox[List["B", " ", "e", " ", "f"]]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "A"]], " ", "d", " ", "e"]], "+", RowBox[List["C", " ", "e", " ", "f"]], "+", RowBox[List["B", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["f", "2"]]], ")"]]]]]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "B"]], " ", "d", " ", "e"]], "-", RowBox[List["C", " ", "d", " ", "f"]], "+", RowBox[List["A", " ", RowBox[List["(", RowBox[List[SuperscriptBox["e", "2"], "+", SuperscriptBox["f", "2"]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["e", "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", "f"]], ")"]], " ", RowBox[List["Tan", "[", FractionBox["z", "2"], "]"]]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["d", "2"]]], "+", SuperscriptBox["e", "2"], "+", SuperscriptBox["f", "2"]]]]], "]"]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["B", " ", "c", " ", "d"]], "-", RowBox[List["b", " ", "C", " ", "d"]], "-", RowBox[List["A", " ", "c", " ", "e"]], "+", RowBox[List["a", " ", "C", " ", "e"]], "+", RowBox[List["A", " ", "b", " ", "f"]], "-", RowBox[List["a", " ", "B", " ", "f"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", "z", "]"]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["B", " ", "c", " ", "d"]], "-", RowBox[List["b", " ", "C", " ", "d"]], "-", RowBox[List["A", " ", "c", " ", "e"]], "+", RowBox[List["a", " ", "C", " ", "e"]], "+", RowBox[List["A", " ", "b", " ", "f"]], "-", RowBox[List["a", " ", "B", " ", "f"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", RowBox[List["e", " ", RowBox[List["Sin", "[", "z", "]"]]]]]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]]]], "-", RowBox[List["2", " ", "a", " ", "c", " ", "d", " ", "f"]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a", " ", "d", " ", "e"]], "+", RowBox[List["2", " ", "c", " ", "e", " ", "f"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["f", "2"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["e", "2"], "+", SuperscriptBox["f", "2"]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mi> A </mi> <mo> + </mo> <mrow> <mi> C </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> B </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> B </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> + </mo> <mrow> <mi> C </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> B </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> C </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> B </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> C </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> A </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> d </mi> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mrow> <mo> - </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> f </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> C </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> A </mi> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mi> B </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> A </mi> </mrow> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> + </mo> <mrow> <mi> C </mi> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> + </mo> <mrow> <mi> B </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> f </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> B </mi> </mrow> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> C </mi> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mi> A </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> f </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> f </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> B </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> C </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> A </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> C </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> + </mo> <mrow> <mi> A </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> B </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> B </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> C </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> A </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> C </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> + </mo> <mrow> <mi> A </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> B </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> f </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> f </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <plus /> <ci> A </ci> <apply> <times /> <ci> C </ci> <apply> <cos /> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> B </ci> <apply> <sin /> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <cos /> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> e </ci> <apply> <sin /> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> f </ci> <apply> <cos /> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> B </ci> <ci> e </ci> </apply> <apply> <times /> <ci> C </ci> <ci> f </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> B </ci> </apply> <apply> <times /> <ci> c </ci> <ci> C </ci> </apply> </apply> <ci> d </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> B </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> C </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> c </ci> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> f </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> A </ci> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> e </ci> <ci> b </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <ci> c </ci> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> f </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <arctanh /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <tan /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <ci> C </ci> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> A </ci> <ci> d </ci> <ci> f </ci> </apply> </apply> <apply> <times /> <ci> B </ci> <ci> e </ci> <ci> f </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> A </ci> </apply> <ci> d </ci> <ci> e </ci> </apply> <apply> <times /> <ci> C </ci> <ci> f </ci> <ci> e </ci> </apply> <apply> <times /> <ci> B </ci> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> B </ci> </apply> <ci> d </ci> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> C </ci> <ci> d </ci> <ci> f </ci> </apply> </apply> <apply> <times /> <ci> A </ci> <apply> <plus /> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <arctanh /> <apply> <times /> <apply> <plus /> <ci> e </ci> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> <apply> <tan /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> B </ci> <ci> c </ci> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> C </ci> <ci> d </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> A </ci> <ci> c </ci> <ci> e </ci> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> C </ci> <ci> e </ci> </apply> <apply> <times /> <ci> A </ci> <ci> b </ci> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> B </ci> <ci> f </ci> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> c </ci> <apply> <cos /> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sin /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> B </ci> <ci> c </ci> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> C </ci> <ci> d </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> A </ci> <ci> c </ci> <ci> e </ci> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> C </ci> <ci> e </ci> </apply> <apply> <times /> <ci> A </ci> <ci> b </ci> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> B </ci> <ci> f </ci> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> f </ci> <apply> <cos /> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> e </ci> <apply> <sin /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> d </ci> <ci> f </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> e </ci> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> d </ci> <ci> e </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["A_", "+", RowBox[List["B_", " ", RowBox[List["Sin", "[", "z_", "]"]]]], "+", RowBox[List["C", " ", RowBox[List["Cos", "[", "z_", "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sin", "[", "z_", "]"]]]], "+", RowBox[List["c_", " ", RowBox[List["Cos", "[", "z_", "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["d_", "+", RowBox[List["e_", " ", RowBox[List["Sin", "[", "z_", "]"]]]], "+", RowBox[List["f_", " ", RowBox[List["Cos", "[", "z_", "]"]]]]]], ")"]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "B"]], "+", RowBox[List["c", " ", "C"]]]], ")"]], " ", "d"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["B", " ", "c"]], "-", RowBox[List["b", " ", "C"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", "e"]], "-", RowBox[List["b", " ", "f"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["B", " ", "e"]], "+", RowBox[List["C", " ", "f"]]]], ")"]]]], "+", RowBox[List["A", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "2"], " ", "d"]], "-", RowBox[List["a", " ", "b", " ", "e"]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", "d"]], "-", RowBox[List["a", " ", "f"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], " ", RowBox[List["Tan", "[", FractionBox["z", "2"], "]"]]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]]]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]]]]]], "-", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["C", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]]]], "-", RowBox[List["A", " ", "d", " ", "f"]], "+", RowBox[List["B", " ", "e", " ", "f"]]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "A"]], " ", "d", " ", "e"]], "+", RowBox[List["C", " ", "e", " ", "f"]], "+", RowBox[List["B", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["f", "2"]]], ")"]]]]]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "B"]], " ", "d", " ", "e"]], "-", RowBox[List["C", " ", "d", " ", "f"]], "+", RowBox[List["A", " ", RowBox[List["(", RowBox[List[SuperscriptBox["e", "2"], "+", SuperscriptBox["f", "2"]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["e", "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", "f"]], ")"]], " ", RowBox[List["Tan", "[", FractionBox["z", "2"], "]"]]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["d", "2"]]], "+", SuperscriptBox["e", "2"], "+", SuperscriptBox["f", "2"]]]]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["d", "2"]]], "+", SuperscriptBox["e", "2"], "+", SuperscriptBox["f", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["B", " ", "c", " ", "d"]], "-", RowBox[List["b", " ", "C", " ", "d"]], "-", RowBox[List["A", " ", "c", " ", "e"]], "+", RowBox[List["a", " ", "C", " ", "e"]], "+", RowBox[List["A", " ", "b", " ", "f"]], "-", RowBox[List["a", " ", "B", " ", "f"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", "z", "]"]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["B", " ", "c", " ", "d"]], "-", RowBox[List["b", " ", "C", " ", "d"]], "-", RowBox[List["A", " ", "c", " ", "e"]], "+", RowBox[List["a", " ", "C", " ", "e"]], "+", RowBox[List["A", " ", "b", " ", "f"]], "-", RowBox[List["a", " ", "B", " ", "f"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", RowBox[List["e", " ", RowBox[List["Sin", "[", "z", "]"]]]]]], "]"]]]]]], RowBox[List[RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]]]], "-", RowBox[List["2", " ", "a", " ", "c", " ", "d", " ", "f"]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a", " ", "d", " ", "e"]], "+", RowBox[List["2", " ", "c", " ", "e", " ", "f"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["f", "2"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["e", "2"], "+", SuperscriptBox["f", "2"]]], ")"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18