Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cos






Mathematica Notation

Traditional Notation









Elementary Functions > Cos[z] > Integration > Indefinite integration > Involving functions of the direct function and trigonometric functions > Involving rational functions of the direct function and trigonometric functions > Involving rational functions of sin > Involving sin(d z)(a sin2(e z)+b sin(2 e z)+c cos2(e z))-n





http://functions.wolfram.com/01.07.21.2283.01









  


  










Input Form





Integrate[Sin[e z]/(a Sin[e z]^2 + b Sin[2 e z] + c Cos[e z]^2), z] == (Sqrt[a + 2 I b - c] ((-I) b + c - Sqrt[-b^2 + a c]) Sqrt[a + c + 2 Sqrt[-b^2 + a c]] ArcTan[(Sqrt[-a - 2 I b + c] E^(I e z))/ Sqrt[a + c - 2 Sqrt[-b^2 + a c]]] + I Sqrt[-a - 2 I b + c] Sqrt[a + c - 2 Sqrt[-b^2 + a c]] (b + I (c + Sqrt[-b^2 + a c])) ArcTanh[(Sqrt[a + 2 I b - c] E^(I e z))/ Sqrt[a + c + 2 Sqrt[-b^2 + a c]]])/(Sqrt[-(a + 2 I b - c)^2] Sqrt[-b^2 + a c] Sqrt[a + c - 2 Sqrt[-b^2 + a c]] Sqrt[a + c + 2 Sqrt[-b^2 + a c]] e)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], RowBox[List[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]], "+", RowBox[List["c", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "-", "c"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c", "-", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]], ")"]], " ", SqrtBox[RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], SqrtBox[RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]]], " ", SqrtBox[RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "-", "c"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], SqrtBox[RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "-", "c"]], ")"]], "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]], " ", SqrtBox[RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]], " ", SqrtBox[RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]], " ", "e"]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mtext> </mtext> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> - </mo> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> c </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> c </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mtext> </mtext> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arctan /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> </apply> </apply> <ci> c </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> </apply> </apply> <ci> c </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <imaginaryi /> </apply> </apply> <imaginaryi /> <apply> <arctanh /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], RowBox[List[RowBox[List["a_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]], "+", RowBox[List["b_", " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "e_", " ", "z_"]], "]"]]]], "+", RowBox[List["c_", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "-", "c"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c", "-", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]], ")"]], " ", SqrtBox[RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], SqrtBox[RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]]], " ", SqrtBox[RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "-", "c"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], SqrtBox[RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]], "]"]]]]]], RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "-", "c"]], ")"]], "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]], " ", SqrtBox[RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]], " ", SqrtBox[RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]], " ", "e"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18