Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cos






Mathematica Notation

Traditional Notation









Elementary Functions > Cos[z] > Integration > Indefinite integration > Involving functions of the direct function and trigonometric functions > Involving algebraic functions of the direct function and trigonometric functions > Involving algebraic functions of sin > Involving (a sin(e z)+b cos(e z))beta





http://functions.wolfram.com/01.07.21.2378.01









  


  










Input Form





Integrate[Cos[e z]/(a Sin[e z] + b Cos[e z])^(3/2), z] == (2 ((-a^2) Sqrt[1 + b^2/a^2] + b Sqrt[Cos[e z + ArcTan[b/a]]^2] HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[e z + ArcTan[b/a]]^2] Sec[e z + ArcTan[b/a]] (b Cos[e z] + a Sin[e z])))/ (a (a^2 + b^2) Sqrt[1 + b^2/a^2] e Sqrt[b Cos[e z] + a Sin[e z]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["a", "2"]]]]]]], "+", RowBox[List["b", " ", SqrtBox[SuperscriptBox[RowBox[List["Cos", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTan", "[", FractionBox["b", "a"], "]"]]]], "]"]], "2"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["1", "2"]]], "}"]], ",", RowBox[List["{", FractionBox["5", "4"], "}"]], ",", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTan", "[", FractionBox["b", "a"], "]"]]]], "]"]], "2"]]], "]"]], " ", RowBox[List["Sec", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTan", "[", FractionBox["b", "a"], "]"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["a", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["a", "2"]]]]], " ", "e", " ", SqrtBox[RowBox[List[RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> <mo> ; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;4&quot;], HypergeometricPFQ], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;5&quot;, &quot;4&quot;], HypergeometricPFQ], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], &quot;;&quot;, TagBox[RowBox[List[SuperscriptBox[&quot;sin&quot;, &quot;2&quot;], &quot;(&quot;, RowBox[List[RowBox[List[&quot;e&quot;, &quot; &quot;, &quot;z&quot;]], &quot;+&quot;, RowBox[List[SuperscriptBox[&quot;tan&quot;, RowBox[List[&quot;-&quot;, &quot;1&quot;]]], &quot;(&quot;, FractionBox[&quot;b&quot;, &quot;a&quot;], &quot;)&quot;]]]], &quot;)&quot;]], HypergeometricPFQ]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <power /> <apply> <cos /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctan /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 1 <sep /> 4 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </list> <list> <cn type='rational'> 5 <sep /> 4 </cn> </list> <apply> <power /> <apply> <sin /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctan /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <sec /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctan /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> e </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Cos", "[", RowBox[List["e_", " ", "z_"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a_", " ", RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]]]], "+", RowBox[List["b_", " ", RowBox[List["Cos", "[", RowBox[List["e_", " ", "z_"]], "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["a", "2"]]]]]]], "+", RowBox[List["b", " ", SqrtBox[SuperscriptBox[RowBox[List["Cos", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTan", "[", FractionBox["b", "a"], "]"]]]], "]"]], "2"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["1", "2"]]], "}"]], ",", RowBox[List["{", FractionBox["5", "4"], "}"]], ",", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTan", "[", FractionBox["b", "a"], "]"]]]], "]"]], "2"]]], "]"]], " ", RowBox[List["Sec", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTan", "[", FractionBox["b", "a"], "]"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["a", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["a", "2"]]]]], " ", "e", " ", SqrtBox[RowBox[List[RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18