Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cos






Mathematica Notation

Traditional Notation









Elementary Functions > Cos[z] > Integration > Indefinite integration > Involving functions of the direct function and trigonometric functions > Involving algebraic functions of the direct function and trigonometric functions > Involving algebraic functions of sin > Involving (a+b sin(e z)+c cos(e z))beta





http://functions.wolfram.com/01.07.21.2384.01









  


  










Input Form





Integrate[Sqrt[a + b Sin[e z] + c Cos[e z]], z] == ((-b) (b^2 + c^2) Sqrt[1 + c^2/b^2] AppellF1[-(1/2), -(1/2), -(1/2), 1/2, (a + c Cos[e z] + b Sin[e z])/(a + Sqrt[1 + b^2/c^2] c), (a + c Cos[e z] + b Sin[e z])/(a - Sqrt[1 + b^2/c^2] c)] Sin[e z - ArcTan[b/c]] + Sqrt[-(((b^2 + c (a Sqrt[1 + b^2/c^2] + c)) (1 + Cos[e z - ArcTan[b/c]]))/ (a^2 - b^2 - c^2))] Sqrt[-((1/(a^2 - b^2 - c^2)) (b^2 - a Sqrt[1 + b^2/c^2] c + c^2 + c (a - Sqrt[1 + b^2/c^2] c) Cos[e z] + b (a - Sqrt[1 + b^2/c^2] c) Sin[e z]))] (Sqrt[1 + c^2/b^2] (2 Sqrt[1 + b^2/c^2] c^3 Cos[e z] - 2 c (b^2 + c^2) Cos[e z - ArcTan[b/c]] + b (2 Sqrt[1 + b^2/c^2] c^2 Sin[e z] + (b^2 + c^2) Sin[e z - ArcTan[b/c]])) + 2 a Sqrt[1 + b^2/c^2] c AppellF1[1/2, 1/2, 1/2, 3/2, (a + c Cos[e z] + b Sin[e z])/ (a + b Sqrt[1 + c^2/b^2]), (a + c Cos[e z] + b Sin[e z])/ (a - b Sqrt[1 + c^2/b^2])] Sec[e z + ArcTan[c/b]] (a + c Cos[e z] + b Sin[e z]) Sqrt[-((1/(a^2 - b^2 - c^2)) (b^2 + c^2 - a b Sqrt[1 + c^2/b^2] + c (a - b Sqrt[1 + c^2/b^2]) Cos[e z] + b (a - b Sqrt[1 + c^2/b^2]) Sin[e z]))] Sqrt[-((1/(a^2 - b^2 - c^2)) ((b^2 + c^2 + a b Sqrt[1 + c^2/b^2]) (Cos[(1/2) (e z + ArcTan[c/b])] + Sin[(1/2) (e z + ArcTan[c/b])])^ 2))]))/(b Sqrt[1 + b^2/c^2] c Sqrt[1 + c^2/b^2] e Sqrt[(Sqrt[1 + b^2/c^2] c - c Cos[e z] - b Sin[e z])/ (a + Sqrt[1 + b^2/c^2] c)] Sqrt[a + c Cos[e z] + b Sin[e z]] Sqrt[(Sqrt[1 + b^2/c^2] c + c Cos[e z] + b Sin[e z])/ (-a + Sqrt[1 + b^2/c^2] c)])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", FractionBox["1", "2"], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["e", " ", "z"]], "-", RowBox[List["ArcTan", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]]]], "+", "c"]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cos", "[", RowBox[List[RowBox[List["e", " ", "z"]], "-", RowBox[List["ArcTan", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], ")"]]]], RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["a", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]], "+", SuperscriptBox["c", "2"], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", SuperscriptBox["c", "3"], " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["e", " ", "z"]], "-", RowBox[List["ArcTan", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", SuperscriptBox["c", "2"], " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["e", " ", "z"]], "-", RowBox[List["ArcTan", "[", FractionBox["b", "c"], "]"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c", " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", FractionBox["3", "2"], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List["b", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]]]]], "]"]], " ", RowBox[List["Sec", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTan", "[", FractionBox["c", "b"], "]"]]]], "]"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"], "-", RowBox[List["a", " ", "b", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["b", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["b", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"], "+", RowBox[List["a", " ", "b", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTan", "[", FractionBox["c", "b"], "]"]]]], ")"]]]], "]"]], "+", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTan", "[", FractionBox["c", "b"], "]"]]]], ")"]]]], "]"]]]], ")"]], "2"]]], ")"]]]]]], ")"]]]]]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["b", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]], " ", "e", " ", SqrtBox[FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]], "-", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "-", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]], "+", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> b </mi> <mi> c </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> &#8730; </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <msqrt> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <msqrt> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> c </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> b </mi> <mi> c </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> b </mi> <mi> c </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> c </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8730; </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8730; </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> c </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> c </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <msqrt> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> b </mi> <mi> c </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <msqrt> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> </apply> <ci> c </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <cos /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arctan /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <root /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <ci> b </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arctan /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <ci> c </ci> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <sin /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arctan /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> AppellF1 </ci> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> c </ci> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> c </ci> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sec /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctan /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> c </ci> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <root /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <ci> c </ci> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <root /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctan /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctan /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> AppellF1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> c </ci> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> c </ci> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arctan /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> e </ci> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <ci> c </ci> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> c </ci> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <ci> c </ci> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[SqrtBox[RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]]]], "+", RowBox[List["c_", " ", RowBox[List["Cos", "[", RowBox[List["e_", " ", "z_"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", FractionBox["1", "2"], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["e", " ", "z"]], "-", RowBox[List["ArcTan", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]]]], "+", "c"]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cos", "[", RowBox[List[RowBox[List["e", " ", "z"]], "-", RowBox[List["ArcTan", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], ")"]]]], RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["a", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]], "+", SuperscriptBox["c", "2"], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", SuperscriptBox["c", "3"], " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["e", " ", "z"]], "-", RowBox[List["ArcTan", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", SuperscriptBox["c", "2"], " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["e", " ", "z"]], "-", RowBox[List["ArcTan", "[", FractionBox["b", "c"], "]"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c", " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", FractionBox["3", "2"], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List["b", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]]]]], "]"]], " ", RowBox[List["Sec", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTan", "[", FractionBox["c", "b"], "]"]]]], "]"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"], "-", RowBox[List["a", " ", "b", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["b", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["b", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"], "+", RowBox[List["a", " ", "b", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTan", "[", FractionBox["c", "b"], "]"]]]], ")"]]]], "]"]], "+", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTan", "[", FractionBox["c", "b"], "]"]]]], ")"]]]], "]"]]]], ")"]], "2"]]], RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], ")"]]]]]], RowBox[List["b", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c", " ", SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]], " ", "e", " ", SqrtBox[FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]], "-", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "-", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]], "+", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18