Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cos






Mathematica Notation

Traditional Notation









Elementary Functions > Cos[z] > Integration > Indefinite integration > Involving functions of the direct function and trigonometric functions > Involving algebraic functions of the direct function and trigonometric functions > Involving algebraic functions of sin > Involving (a sin2(e z)+b cos2(e z))beta





http://functions.wolfram.com/01.07.21.2391.01









  


  










Input Form





Integrate[(a Sin[e z]^2 + b Cos[e z]^2)^\[Beta], z] == (1/(e \[Beta])) ((I 2^(-1 - 2 \[Beta]) (((-a) (-1 + E^(2 I e z))^2 + b (1 + E^(2 I e z))^2)/E^(2 I e z))^\[Beta] AppellF1[-\[Beta], -\[Beta], -\[Beta], 1 - \[Beta], -(((-a + b) E^(2 I e z))/(a + b + 2 Sqrt[a b])), ((-a + b) E^(2 I e z))/(-a - b + 2 Sqrt[a b])])/ ((1 - ((-a + b) E^(2 I e z))/(-a - b + 2 Sqrt[a b]))^\[Beta] (1 + ((-a + b) E^(2 I e z))/(a + b + 2 Sqrt[a b]))^\[Beta]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], "\[Beta]"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["e", " ", "\[Beta]"]]], RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "\[Beta]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "-", "b", "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", "b"]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", "b"]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "e", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], ")"]], "2"]]], "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], ")"]], "2"]]]]], ")"]]]], ")"]], "\[Beta]"], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "-", "\[Beta]"]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", "b"]]]]]]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "-", "b", "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", "b"]]]]]]]]]], "]"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> &#946; </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> &#946; </mi> </msup> <mo> &#8290; </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#946; </mi> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> , </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> &#946; </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> e </ci> <ci> &#946; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#946; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <ci> &#946; </ci> </apply> <apply> <ci> AppellF1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]], "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]], ")"]], "\[Beta]_"], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "\[Beta]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "-", "b", "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", "b"]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", "b"]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "e", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], ")"]], "2"]]], "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], ")"]], "2"]]]]], ")"]]]], ")"]], "\[Beta]"], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "-", "\[Beta]"]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", "b"]]]]]]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "-", "b", "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", "b"]]]]]]]]]], "]"]]]], RowBox[List["e", " ", "\[Beta]"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18