Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cos






Mathematica Notation

Traditional Notation









Elementary Functions > Cos[z] > Integration > Indefinite integration > Involving functions of the direct function and trigonometric functions > Involving algebraic functions of the direct function and trigonometric functions > Involving algebraic functions of sin > Involving (a sin2(e z)+b cos2(e z))beta





http://functions.wolfram.com/01.07.21.2395.01









  


  










Input Form





Integrate[1/Sqrt[a Sin[e z]^2 + b Cos[e z]^2], z] == -(2 I (1 + Cos[e z]) Sqrt[(a + b + (-a + b) Cos[2 e z])/(1 + Cos[e z])^2] EllipticF[I ArcSinh[Sqrt[b/(2 a + 2 Sqrt[a] Sqrt[a - b] - b)] Tan[(e z)/2]], (-2 a - 2 Sqrt[a] Sqrt[a - b] + b)/ (-2 a + 2 Sqrt[a] Sqrt[a - b] + b)] Sqrt[1 + (b Tan[(e z)/2]^2)/(2 a + 2 Sqrt[a] Sqrt[a - b] - b)] Sqrt[1 - (b Tan[(e z)/2]^2)/(-2 a + 2 Sqrt[a] Sqrt[a - b] + b)])/ (Sqrt[b/(2 a + 2 Sqrt[a] Sqrt[a - b] - b)] e Sqrt[a + b + (-a + b) Cos[2 e z]] Sqrt[4 a Tan[(e z)/2]^2 + b (-1 + Tan[(e z)/2]^2)^2])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SqrtBox[RowBox[List[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["a", "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]], "2"]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox["b", RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "-", "b"]]]], " ", RowBox[List["Tan", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "-", "b"]]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]]]]], ")"]]]], "/", RowBox[List["(", RowBox[List[SqrtBox[FractionBox["b", RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "-", "b"]]]], " ", "e", " ", SqrtBox[RowBox[List["a", "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["4", " ", "a", " ", SuperscriptBox[RowBox[List["Tan", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["Tan", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], ")"]], "2"]]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mi> b </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> - </mo> <mi> b </mi> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> - </mo> <mi> b </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mi> b </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> - </mo> <mi> b </mi> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> tan </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticF </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <tan /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> e </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SqrtBox[RowBox[List[RowBox[List["a_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]], "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["a", "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]], "2"]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox["b", RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "-", "b"]]]], " ", RowBox[List["Tan", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "-", "b"]]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]]]]], RowBox[List[SqrtBox[FractionBox["b", RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "-", "b"]]]], " ", "e", " ", SqrtBox[RowBox[List["a", "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["4", " ", "a", " ", SuperscriptBox[RowBox[List["Tan", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["Tan", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], ")"]], "2"]]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18