Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cos






Mathematica Notation

Traditional Notation









Elementary Functions > Cos[z] > Integration > Indefinite integration > Involving functions of the direct function and trigonometric functions > Involving algebraic functions of the direct function and trigonometric functions > Involving algebraic functions of sin > Involving sin(d z) (a+b sin2(e z)+c cos2(e z))beta





http://functions.wolfram.com/01.07.21.2416.01









  


  










Input Form





Integrate[Sin[d z] (a + b Sin[e z]^2 + c Cos[e z]^2)^\[Beta], z] == (-(1/(d^2 - 4 e^2 \[Beta]^2))) ((2^(-1 - 2 \[Beta]) ((4 a E^(2 I e z) - b (-1 + E^(2 I e z))^2 + c (1 + E^(2 I e z))^2)/E^(2 I e z))^\[Beta] (E^(2 I d z) (d + 2 e \[Beta]) AppellF1[d/(2 e) - \[Beta], -\[Beta], -\[Beta], 1 + d/(2 e) - \[Beta], ((b - c) E^(2 I e z))/ (2 a + b + c + 2 Sqrt[(a + b) (a + c)]), ((b - c) E^(2 I e z))/ (2 a + b + c - 2 Sqrt[(a + b) (a + c)])] + (d - 2 e \[Beta]) AppellF1[-((d + 2 e \[Beta])/(2 e)), -\[Beta], -\[Beta], 1 - d/(2 e) - \[Beta], ((b - c) E^(2 I e z))/ (2 a + b + c + 2 Sqrt[(a + b) (a + c)]), ((b - c) E^(2 I e z))/ (2 a + b + c - 2 Sqrt[(a + b) (a + c)])]))/ (E^(I d z) (1 + ((-b + c) E^(2 I e z))/(2 a + b + c - 2 Sqrt[(a + b) (a + c)]))^\[Beta] (1 + ((-b + c) E^(2 I e z))/(2 a + b + c + 2 Sqrt[(a + b) (a + c)]))^ \[Beta]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Sin", "[", RowBox[List["d", " ", "z"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["c", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], "\[Beta]"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List[SuperscriptBox["d", "2"], "-", RowBox[List["4", " ", SuperscriptBox["e", "2"], " ", SuperscriptBox["\[Beta]", "2"]]]]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "\[Beta]"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "e", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "a", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], "-", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], ")"]], "2"]]], "+", RowBox[List["c", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], ")"]], "2"]]]]], ")"]]]], ")"]], "\[Beta]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "e", " ", "\[Beta]"]]]], ")"]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List[FractionBox["d", RowBox[List["2", " ", "e"]]], "-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox["d", RowBox[List["2", " ", "e"]]], "-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "e", " ", "\[Beta]"]]]], ")"]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e", " ", "\[Beta]"]]]], RowBox[List["2", " ", "e"]]]]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "-", FractionBox["d", RowBox[List["2", " ", "e"]]], "-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mtext> </mtext> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> &#946; </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> &#946; </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> &#946; </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> </mrow> </mfrac> </mrow> <mo> - </mo> <mi> &#946; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> </mrow> </mfrac> <mo> - </mo> <mi> &#946; </mi> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> <mo> ; </mo> <mrow> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> </mrow> </mfrac> <mo> - </mo> <mi> &#946; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sin /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> &#946; </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> &#946; </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#946; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <ci> &#946; </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> &#946; </ci> </apply> </apply> </apply> <apply> <ci> AppellF1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> &#946; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> &#946; </ci> </apply> </apply> <apply> <ci> AppellF1 </ci> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Sin", "[", RowBox[List["d_", " ", "z_"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]], "+", RowBox[List["c_", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]], ")"]], "\[Beta]_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "\[Beta]"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "e", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "a", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], "-", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], ")"]], "2"]]], "+", RowBox[List["c", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], ")"]], "2"]]]]], ")"]]]], ")"]], "\[Beta]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "e", " ", "\[Beta]"]]]], ")"]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List[FractionBox["d", RowBox[List["2", " ", "e"]]], "-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox["d", RowBox[List["2", " ", "e"]]], "-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "e", " ", "\[Beta]"]]]], ")"]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e", " ", "\[Beta]"]]]], RowBox[List["2", " ", "e"]]]]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "-", FractionBox["d", RowBox[List["2", " ", "e"]]], "-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List[SuperscriptBox["d", "2"], "-", RowBox[List["4", " ", SuperscriptBox["e", "2"], " ", SuperscriptBox["\[Beta]", "2"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18