|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.07.21.2428.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z^n Sin[d + c z] Cos[a z + b]^\[Nu], z] ==
((I/2) Cos[b + a z]^\[Nu] n!
(Sum[(1/(-j + n)!) (-1)^j z^(-j + n) ((-I) c - I a \[Nu])^(-1 - j)
HypergeometricPFQ[{Subscript[b, 1], \[Ellipsis], Subscript[b, 1 + j],
-\[Nu]}, {1 + Subscript[b, 1], \[Ellipsis],
1 + Subscript[b, 1 + j]}, -E^(2 I (b + a z))], {j, 0, n}]/
E^(I (d + c z)) - E^(I (d + c z)) Sum[(1/(-j + n)!) (-1)^j z^(-j + n)
(I c - I a \[Nu])^(-1 - j) HypergeometricPFQ[{Subscript[c, 1],
\[Ellipsis], Subscript[c, 1 + j], -\[Nu]}, {1 + Subscript[c, 1],
\[Ellipsis], 1 + Subscript[c, 1 + j]}, -E^(2 I (b + a z))],
{j, 0, n}]))/(1 + E^(2 I (b + a z)))^\[Nu] /;
Subscript[b, 1] == Subscript[b, 2] == \[Ellipsis] == Subscript[b, n + 1] ==
-((c + a \[Nu])/(2 a)) && Subscript[c, 1] == Subscript[c, 2] ==
\[Ellipsis] == Subscript[c, n + 1] == -((-c + a \[Nu])/(2 a)) &&
Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], " ", RowBox[List["Sin", "[", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], "]"]], SuperscriptBox[RowBox[List["Cos", "[", RowBox[List[RowBox[List["a", " ", "z"]], "+", "b"]], "]"]], "\[Nu]"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["\[ImaginaryI]", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], "\[Nu]"], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Nu]"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", RowBox[List["1", "+", "j"]]], ",", RowBox[List["-", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["b", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["b", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]]]], "]"]]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Nu]"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["c", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["c", RowBox[List["1", "+", "j"]]], ",", RowBox[List["-", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["c", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["c", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]]]], "]"]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["b", "1"], "\[Equal]", SubscriptBox["b", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["b", RowBox[List["n", "+", "1"]]], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List["c", "+", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]]]]]], "\[And]", RowBox[List[SubscriptBox["c", "1"], "\[Equal]", SubscriptBox["c", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["c", RowBox[List["n", "+", "1"]]], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]]]]]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> cos </mi> <mi> ν </mi> </msup> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> cos </mi> <mi> ν </mi> </msup> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox[RowBox[List["c", "+", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List["-", FractionBox[RowBox[List["c", "+", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]]]], HypergeometricPFQ], ",", TagBox[RowBox[List["-", "\[Nu]"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox[RowBox[List["c", "+", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List["1", "-", FractionBox[RowBox[List["c", "+", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]]]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mi> c </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mi> c </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mi> c </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mi> c </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["a", " ", "\[Nu]"]], "-", "c"]], RowBox[List["2", " ", "a"]]]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["a", " ", "\[Nu]"]], "-", "c"]], RowBox[List["2", " ", "a"]]]]], HypergeometricPFQ], ",", TagBox[RowBox[List["-", "\[Nu]"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["a", " ", "\[Nu]"]], "-", "c"]], RowBox[List["2", " ", "a"]]]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["a", " ", "\[Nu]"]], "-", "c"]], RowBox[List["2", " ", "a"]]]]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <sin /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <cos /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <ci> ν </ci> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <cos /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <ci> ν </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> ν </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> a </ci> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> … </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> a </ci> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> a </ci> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> … </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> a </ci> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> ν </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> … </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> … </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", RowBox[List["Sin", "[", RowBox[List["d_", "+", RowBox[List["c_", " ", "z_"]]]], "]"]], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List[RowBox[List["a_", " ", "z_"]], "+", "b_"]], "]"]], "\[Nu]_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], "\[Nu]"], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Nu]"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["c", "+", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", RowBox[List["-", "\[Nu]"]], "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["c", "+", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Nu]"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", RowBox[List["-", "\[Nu]"]], "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|