html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 Cos

 http://functions.wolfram.com/01.07.21.2657.01

 Input Form

 Integrate[(E^(p z) Sin[d z] Cos[e z])/(a + b Cos[c z]), z] == (-(1/(4 b Sqrt[a^2 - b^2]))) ((1/(c + d - e - I p)) (E^(I (c + d - e - I p) z) ((a + Sqrt[a^2 - b^2]) Hypergeometric2F1[(c + d - e - I p)/c, 1, (2 c + d - e - I p)/c, (b E^(I c z))/(-a + Sqrt[a^2 - b^2])] + (-a + Sqrt[a^2 - b^2]) Hypergeometric2F1[(c + d - e - I p)/c, 1, (2 c + d - e - I p)/c, -((b E^(I c z))/(a + Sqrt[a^2 - b^2]))])) - (1/(c - d + e - I p)) (E^(I (c - d + e - I p) z) ((a + Sqrt[a^2 - b^2]) Hypergeometric2F1[(c - d + e - I p)/c, 1, (2 c - d + e - I p)/c, (b E^(I c z))/(-a + Sqrt[a^2 - b^2])] + (-a + Sqrt[a^2 - b^2]) Hypergeometric2F1[(c - d + e - I p)/c, 1, (2 c - d + e - I p)/c, -((b E^(I c z))/(a + Sqrt[a^2 - b^2]))])) + (1/(c + d + e - I p)) (E^(I (c + d + e - I p) z) ((a + Sqrt[a^2 - b^2]) Hypergeometric2F1[(c + d + e - I p)/c, 1, (2 c + d + e - I p)/c, (b E^(I c z))/(-a + Sqrt[a^2 - b^2])] + (-a + Sqrt[a^2 - b^2]) Hypergeometric2F1[(c + d + e - I p)/c, 1, (2 c + d + e - I p)/c, -((b E^(I c z))/(a + Sqrt[a^2 - b^2]))])) + (1/(-c + d + e + I p)) (E^((I c - I (d + e + I p)) z) ((a + Sqrt[a^2 - b^2]) Hypergeometric2F1[-((-c + d + e + I p)/c), 1, -((-2 c + d + e + I p)/c), (b E^(I c z))/(-a + Sqrt[a^2 - b^2])] + (-a + Sqrt[a^2 - b^2]) Hypergeometric2F1[-((-c + d + e + I p)/c), 1, -((-2 c + d + e + I p)/c), -((b E^(I c z))/(a + Sqrt[a^2 - b^2]))])))

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], RowBox[List["Sin", "[", RowBox[List["d", " ", "z"]], "]"]], RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["4", " ", "b", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["c", "+", "d", "-", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", "d", "-", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "-", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "-", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["c", "-", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "-", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "-", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "-", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["c", "+", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["-", "c"]], "+", "d", "+", "e", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", "e", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "+", "e", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"]]], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c"]], "+", "d", "+", "e", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "+", "e", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"]]], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c"]], "+", "d", "+", "e", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]]]], ")"]]]]]]]]

 MathML Form

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", RowBox[List["Sin", "[", RowBox[List["d_", " ", "z_"]], "]"]], " ", RowBox[List["Cos", "[", RowBox[List["e_", " ", "z_"]], "]"]]]], RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Cos", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", "d", "-", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "-", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "-", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["c", "+", "d", "-", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "-", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "-", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "-", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["c", "-", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", "1", ",", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["c", "+", "d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", "e", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "+", "e", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"]]], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c"]], "+", "d", "+", "e", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "+", "e", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"]]], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c"]], "+", "d", "+", "e", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["-", "c"]], "+", "d", "+", "e", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]]]]], RowBox[List["4", " ", "b", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2002-12-18