| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.07.21.2671.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[(E^(p z) Sin[d z])/(a + b Sin[e z] + c Cos[e z])^2, z] == 
 -((1/(d - e + I p)) (E^(((-I) d + I e + p) z) 
      (a (a + Sqrt[a^2 - b^2 - c^2]) Hypergeometric2F1[(-d + e - I p)/e, 1, 
         -((d - 2 e + I p)/e), (((-I) b + c) E^(I e z))/
          (-a + Sqrt[a^2 - b^2 - c^2])] + a (-a + Sqrt[a^2 - b^2 - c^2]) 
        Hypergeometric2F1[(-d + e - I p)/e, 1, -((d - 2 e + I p)/e), 
         (I (b + I c) E^(I e z))/(a + Sqrt[a^2 - b^2 - c^2])] - 
       a^2 Hypergeometric2F1[(-d + e - I p)/e, 2, -((d - 2 e + I p)/e), 
         (((-I) b + c) E^(I e z))/(-a + Sqrt[a^2 - b^2 - c^2])] + 
       b^2 Hypergeometric2F1[(-d + e - I p)/e, 2, -((d - 2 e + I p)/e), 
         (((-I) b + c) E^(I e z))/(-a + Sqrt[a^2 - b^2 - c^2])] + 
       c^2 Hypergeometric2F1[(-d + e - I p)/e, 2, -((d - 2 e + I p)/e), 
         (((-I) b + c) E^(I e z))/(-a + Sqrt[a^2 - b^2 - c^2])] - 
       a Sqrt[a^2 - b^2 - c^2] Hypergeometric2F1[(-d + e - I p)/e, 2, 
         -((d - 2 e + I p)/e), (((-I) b + c) E^(I e z))/
          (-a + Sqrt[a^2 - b^2 - c^2])] + a^2 Hypergeometric2F1[
         (-d + e - I p)/e, 2, -((d - 2 e + I p)/e), (I (b + I c) E^(I e z))/
          (a + Sqrt[a^2 - b^2 - c^2])] - b^2 Hypergeometric2F1[
         (-d + e - I p)/e, 2, -((d - 2 e + I p)/e), (I (b + I c) E^(I e z))/
          (a + Sqrt[a^2 - b^2 - c^2])] - c^2 Hypergeometric2F1[
         (-d + e - I p)/e, 2, -((d - 2 e + I p)/e), (I (b + I c) E^(I e z))/
          (a + Sqrt[a^2 - b^2 - c^2])] - a Sqrt[a^2 - b^2 - c^2] 
        Hypergeometric2F1[(-d + e - I p)/e, 2, -((d - 2 e + I p)/e), 
         (I (b + I c) E^(I e z))/(a + Sqrt[a^2 - b^2 - c^2])])) + 
    (1/(d + e - I p)) (E^((I d + I e + p) z) 
      (a (a + Sqrt[a^2 - b^2 - c^2]) Hypergeometric2F1[(d + e - I p)/e, 1, 
         (d + 2 e - I p)/e, (((-I) b + c) E^(I e z))/
          (-a + Sqrt[a^2 - b^2 - c^2])] + a (-a + Sqrt[a^2 - b^2 - c^2]) 
        Hypergeometric2F1[(d + e - I p)/e, 1, (d + 2 e - I p)/e, 
         (I (b + I c) E^(I e z))/(a + Sqrt[a^2 - b^2 - c^2])] - 
       a^2 Hypergeometric2F1[(d + e - I p)/e, 2, (d + 2 e - I p)/e, 
         (((-I) b + c) E^(I e z))/(-a + Sqrt[a^2 - b^2 - c^2])] + 
       b^2 Hypergeometric2F1[(d + e - I p)/e, 2, (d + 2 e - I p)/e, 
         (((-I) b + c) E^(I e z))/(-a + Sqrt[a^2 - b^2 - c^2])] + 
       c^2 Hypergeometric2F1[(d + e - I p)/e, 2, (d + 2 e - I p)/e, 
         (((-I) b + c) E^(I e z))/(-a + Sqrt[a^2 - b^2 - c^2])] - 
       a Sqrt[a^2 - b^2 - c^2] Hypergeometric2F1[(d + e - I p)/e, 2, 
         (d + 2 e - I p)/e, (((-I) b + c) E^(I e z))/
          (-a + Sqrt[a^2 - b^2 - c^2])] + a^2 Hypergeometric2F1[
         (d + e - I p)/e, 2, (d + 2 e - I p)/e, (I (b + I c) E^(I e z))/
          (a + Sqrt[a^2 - b^2 - c^2])] - b^2 Hypergeometric2F1[
         (d + e - I p)/e, 2, (d + 2 e - I p)/e, (I (b + I c) E^(I e z))/
          (a + Sqrt[a^2 - b^2 - c^2])] - c^2 Hypergeometric2F1[
         (d + e - I p)/e, 2, (d + 2 e - I p)/e, (I (b + I c) E^(I e z))/
          (a + Sqrt[a^2 - b^2 - c^2])] - a Sqrt[a^2 - b^2 - c^2] 
        Hypergeometric2F1[(d + e - I p)/e, 2, (d + 2 e - I p)/e, 
         (I (b + I c) E^(I e z))/(a + Sqrt[a^2 - b^2 - c^2])])))/
  (2 (I b + c) (a^2 - b^2 - c^2)^(3/2)) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], RowBox[List["Sin", "[", RowBox[List["d", " ", "z"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["d", "-", "e", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "1", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "1", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]]]], ")"]]]], "/", RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]], ")"]], RowBox[List["3", "/", "2"]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> p </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> d </mi>  <mo> - </mo>  <mi> e </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> d </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> - </mo>  <mi> a </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], "-", "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], " ", ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> - </mo>  <mi> a </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], "-", "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], " ", ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> - </mo>  <mi> a </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], "-", "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], " ", ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> - </mo>  <mi> a </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], "-", "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> - </mo>  <mi> a </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], "-", "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], " ", ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], " ", ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> - </mo>  <mi> a </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], "-", "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], " ", ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> - </mo>  <mi> a </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], "-", "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], " ", ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> - </mo>  <mi> a </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], "-", "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], " ", ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> - </mo>  <mi> a </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], "-", "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> - </mo>  <mi> a </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], "-", "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], " ", ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mi> e </mi>  </mfrac>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], " ", ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> p </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <sin />  <apply>  <times />  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <sin />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <apply>  <cos />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> e </ci>  </apply>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> d </ci>  </apply>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  <ci> p </ci>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> a </ci>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> a </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> a </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <ci> d </ci>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> d </ci>  </apply>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  <ci> p </ci>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> a </ci>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> a </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> a </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> e </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", RowBox[List["Sin", "[", RowBox[List["d_", " ", "z_"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]]]], "+", RowBox[List["c_", " ", RowBox[List["Cos", "[", RowBox[List["e_", " ", "z_"]], "]"]]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["d", "-", "e", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "1", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "1", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "2", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |