|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.07.21.2672.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[(E^(p z) Cos[d z])/(a + b Sin[e z] + c Cos[e z]), z] ==
-(-((1/(d - e + I p)) (I E^(((-I) d + I e + p) z)
((a + Sqrt[a^2 - b^2 - c^2]) Hypergeometric2F1[(-d + e - I p)/e, 1,
-((d - 2 e + I p)/e), (((-I) b + c) E^(I e z))/
(-a + Sqrt[a^2 - b^2 - c^2])] + (-a + Sqrt[a^2 - b^2 - c^2])
Hypergeometric2F1[(-d + e - I p)/e, 1, -((d - 2 e + I p)/e),
(I (b + I c) E^(I e z))/(a + Sqrt[a^2 - b^2 - c^2])]))) +
(1/(d + e - I p)) (I E^((I d + I e + p) z)
((a + Sqrt[a^2 - b^2 - c^2]) Hypergeometric2F1[(d + e - I p)/e, 1,
(d + 2 e - I p)/e, (((-I) b + c) E^(I e z))/
(-a + Sqrt[a^2 - b^2 - c^2])] + (-a + Sqrt[a^2 - b^2 - c^2])
Hypergeometric2F1[(d + e - I p)/e, 1, (d + 2 e - I p)/e,
(I (b + I c) E^(I e z))/(a + Sqrt[a^2 - b^2 - c^2])])))/
(2 (I b + c) Sqrt[a^2 - b^2 - c^2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], RowBox[List["Cos", "[", RowBox[List["d", " ", "z"]], "]"]]]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["c", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["d", "-", "e", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "1", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "1", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]]]], ")"]]]], "/", RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> d </mi> <mo> + </mo> <mi> e </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mi> e </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mi> e </mi> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mi> e </mi> </mfrac> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], "-", "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mi> e </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mi> e </mi> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mi> e </mi> </mfrac> <mo> ; </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], " ", ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> d </mi> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> + </mo> <mi> e </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mi> e </mi> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mi> e </mi> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], "-", "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> + </mo> <mi> e </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mi> e </mi> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mi> e </mi> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], " ", ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> d </ci> </apply> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> d </ci> </apply> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", RowBox[List["Cos", "[", RowBox[List["d_", " ", "z_"]], "]"]]]], RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]]]], "+", RowBox[List["c_", " ", RowBox[List["Cos", "[", RowBox[List["e_", " ", "z_"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List["d", "-", RowBox[List["2", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["d", "-", "e", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "1", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", "1", ",", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], "e"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["d", "+", "e", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|