  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/01.07.21.2687.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Integrate[E^(p z)/(a Sin[e z]^2 + b Sin[2 e z] + c Cos[e z]^2)^2, z] == 
 (((-I) a + 2 b + I c) E^((2 I e + p) z) 
   ((-(a + c)) (a + c + 2 Sqrt[-b^2 + a c]) Hypergeometric2F1[
      1 - (I p)/(2 e), 1, 2 - (I p)/(2 e), -(((-a - 2 I b + c) E^(2 I e z))/
        (a + c - 2 Sqrt[-b^2 + a c]))] - 
    (a + c) (-a - c + 2 Sqrt[-b^2 + a c]) Hypergeometric2F1[1 - (I p)/(2 e), 
      1, 2 - (I p)/(2 e), ((a + 2 I b - c) E^(2 I e z))/
       (a + c + 2 Sqrt[-b^2 + a c])] + 
    2 ((-2 b^2 + c Sqrt[-b^2 + a c] + a (2 c + Sqrt[-b^2 + a c])) 
       Hypergeometric2F1[1 - (I p)/(2 e), 2, 2 - (I p)/(2 e), 
        -(((-a - 2 I b + c) E^(2 I e z))/(a + c - 2 Sqrt[-b^2 + a c]))] + 
      (2 b^2 + c Sqrt[-b^2 + a c] + a (-2 c + Sqrt[-b^2 + a c])) 
       Hypergeometric2F1[1 - (I p)/(2 e), 2, 2 - (I p)/(2 e), 
        ((a + 2 I b - c) E^(2 I e z))/(a + c + 2 Sqrt[-b^2 + a c])])))/
  (2 (-b^2 + a c)^(3/2) (a + c - 2 Sqrt[-b^2 + a c]) 
   (a + c + 2 Sqrt[-b^2 + a c]) (2 e - I p)) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]], "+", RowBox[List["c", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", RowBox[List["2", " ", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]], " ", RowBox[List["(", RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["c", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["c", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]]]], ")"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mfrac>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> p </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sin </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> cos </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mn> 2 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]]]], " ", ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["a", " ", "c"]], "-", SuperscriptBox["b", "2"]]]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mn> 2 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mo> + </mo>  <mi> c </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["a", " ", "c"]], "-", SuperscriptBox["b", "2"]]]]]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mn> 2 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]]]], " ", ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["a", " ", "c"]], "-", SuperscriptBox["b", "2"]]]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <msqrt>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mn> 2 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mo> + </mo>  <mi> c </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["a", " ", "c"]], "-", SuperscriptBox["b", "2"]]]]]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> p </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <apply>  <power />  <apply>  <sin />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <sin />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <apply>  <power />  <apply>  <cos />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  </apply>  <ci> p </ci>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <plus />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  </apply>  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <plus />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  <ci> c </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <ci> a </ci>  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <plus />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <ci> a </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <plus />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  <ci> c </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]], "+", RowBox[List["b_", " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "e_", " ", "z_"]], "]"]]]], "+", RowBox[List["c_", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", RowBox[List["2", " ", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]], " ", RowBox[List["(", RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["c", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["c", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |