html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 Cos

 http://functions.wolfram.com/01.07.21.2690.01

 Input Form

 Integrate[(E^(p z) Cos[d z])/(a Sin[e z]^2 + b Sin[2 e z] + c Cos[e z]^2), z] == -((-a - 2 I b + c) (-((1/((-I) d + 2 I e + p)) (E^(((-I) d + 2 I e + p) z) ((a + c + 2 Sqrt[-b^2 + a c]) Hypergeometric2F1[1 - (d + I p)/(2 e), 1, 2 - (d + I p)/(2 e), -(((-a - 2 I b + c) E^(2 I e z))/ (a + c - 2 Sqrt[-b^2 + a c]))] + (-a - c + 2 Sqrt[-b^2 + a c]) Hypergeometric2F1[1 - (d + I p)/(2 e), 1, 2 - (d + I p)/(2 e), ((a + 2 I b - c) E^(2 I e z))/(a + c + 2 Sqrt[-b^2 + a c])]))) - (1/(I d + 2 I e + p)) (E^((I d + 2 I e + p) z) ((a + c + 2 Sqrt[-b^2 + a c]) Hypergeometric2F1[(d + 2 e - I p)/(2 e), 1, (d + 4 e - I p)/(2 e), -(((-a - 2 I b + c) E^(2 I e z))/ (a + c - 2 Sqrt[-b^2 + a c]))] + (-a - c + 2 Sqrt[-b^2 + a c]) Hypergeometric2F1[(d + 2 e - I p)/(2 e), 1, (d + 4 e - I p)/(2 e), ((a + 2 I b - c) E^(2 I e z))/(a + c + 2 Sqrt[-b^2 + a c])]))))/ (2 Sqrt[-b^2 + a c] (a^2 + 4 b^2 - 2 a c + c^2))

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], RowBox[List["Cos", "[", RowBox[List["d", " ", "z"]], "]"]]]], RowBox[List[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]], "+", RowBox[List["c", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e"]], "+", "p"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "-", FractionBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "-", FractionBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]]]], "-", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e"]], "+", "p"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]], ",", "1", ",", FractionBox[RowBox[List["d", "+", RowBox[List["4", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]], ",", "1", ",", FractionBox[RowBox[List["d", "+", RowBox[List["4", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]]]], ")"]]]], ")"]]]], "/", RowBox[List["(", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["4", " ", SuperscriptBox["b", "2"]]], "-", RowBox[List["2", " ", "a", " ", "c"]], "+", SuperscriptBox["c", "2"]]], ")"]]]], ")"]]]]]]]]

 MathML Form

 p z cos ( d z ) a sin 2 ( e z ) + b sin ( 2 e z ) + c cos 2 ( e z ) z - ( ( - a - 2 b + c ) ( - 1 d + 2 e + p ( ( d + 2 e + p ) z ( ( - a - c + 2 a c - b 2 ) 2 F 1 ( d + 2 e - p 2 e , 1 ; d + 4 e - p 2 e ; ( a - c + 2 b ) 2 e z a + c + 2 a c - b 2 ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["d", "+", RowBox[List["4", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]]]], " ", ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["a", " ", "c"]], "-", SuperscriptBox["b", "2"]]]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] + ( a + c + 2 a c - b 2 ) 2 F 1 ( d + 2 e - p 2 e , 1 ; d + 4 e - p 2 e ; - ( - a - 2 b + c ) 2 e z a + c - 2 a c - b 2 ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["d", "+", RowBox[List["4", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["a", " ", "c"]], "-", SuperscriptBox["b", "2"]]]]]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] ) ) - 1 - d + 2 e + p ( ( - d + 2 e + p ) z ( ( - a - c + 2 a c - b 2 ) 2 F 1 ( 1 - d + p 2 e , 1 ; 2 - d + p 2 e ; ( a - c + 2 b ) 2 e z a + c + 2 a c - b 2 ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["2", "-", FractionBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]]]], " ", ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["a", " ", "c"]], "-", SuperscriptBox["b", "2"]]]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] + ( a + c + 2 a c - b 2 ) 2 F 1 ( 1 - d + p 2 e , 1 ; 2 - d + p 2 e ; - ( - a - 2 b + c ) 2 e z a + c - 2 a c - b 2 ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["2", "-", FractionBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["a", " ", "c"]], "-", SuperscriptBox["b", "2"]]]]]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] ) ) ) ) / ( 2 a c - b 2 ( a 2 - 2 c a + 4 b 2 + c 2 ) ) z p z d z a e z 2 b 2 e z c e z 2 -1 -1 -1 a -1 2 b c -1 1 d 2 e p -1 d 2 e p z -1 a -1 c 2 a c -1 b 2 1 2 Hypergeometric2F1 d 2 e -1 p 2 e -1 1 d 4 e -1 p 2 e -1 a -1 c 2 b 2 e z a c 2 a c -1 b 2 1 2 -1 a c 2 a c -1 b 2 1 2 Hypergeometric2F1 d 2 e -1 p 2 e -1 1 d 4 e -1 p 2 e -1 -1 -1 a -1 2 b c 2 e z a c -1 2 a c -1 b 2 1 2 -1 -1 1 -1 d 2 e p -1 -1 d 2 e p z -1 a -1 c 2 a c -1 b 2 1 2 Hypergeometric2F1 1 -1 d p 2 e -1 1 2 -1 d p 2 e -1 a -1 c 2 b 2 e z a c 2 a c -1 b 2 1 2 -1 a c 2 a c -1 b 2 1 2 Hypergeometric2F1 1 -1 d p 2 e -1 1 2 -1 d p 2 e -1 -1 -1 a -1 2 b c 2 e z a c -1 2 a c -1 b 2 1 2 -1 2 a c -1 b 2 1 2 a 2 -1 2 c a 4 b 2 c 2 -1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", RowBox[List["Cos", "[", RowBox[List["d_", " ", "z_"]], "]"]]]], RowBox[List[RowBox[List["a_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]], "+", RowBox[List["b_", " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "e_", " ", "z_"]], "]"]]]], "+", RowBox[List["c_", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "-", FractionBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "-", FractionBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e"]], "+", "p"]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]], ",", "1", ",", FractionBox[RowBox[List["d", "+", RowBox[List["4", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]], ",", "1", ",", FractionBox[RowBox[List["d", "+", RowBox[List["4", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List["a", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e"]], "+", "p"]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", "c"]]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["4", " ", SuperscriptBox["b", "2"]]], "-", RowBox[List["2", " ", "a", " ", "c"]], "+", SuperscriptBox["c", "2"]]], ")"]]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2002-12-18