Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cos






Mathematica Notation

Traditional Notation









Elementary Functions > Cos[z] > Integration > Definite integration > Multidimensional integrals





http://functions.wolfram.com/01.07.21.2771.01









  


  










Input Form





Integrate[1/(\[CurlyEpsilon] - Cos[Subscript[x, 1]] Cos[Subscript[x, 2]] Cos[Subscript[x, 3]]), {Subscript[x, 1], 0, Pi}, {Subscript[x, 2], 0, Pi}, {Subscript[x, 3], 0, Pi}] == 4 (Pi/\[CurlyEpsilon]) EllipticK[(1/2) (1 - Sqrt[1 - 1/\[CurlyEpsilon]^2])]^ 2 /; \[LeftBracketingBar] \[CurlyEpsilon] \[RightBracketingBar] > 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[FractionBox["1", RowBox[List["\[CurlyEpsilon]", "-", RowBox[List[RowBox[List["Cos", "[", SubscriptBox["x", "1"], "]"]], RowBox[List["Cos", "[", SubscriptBox["x", "2"], "]"]], RowBox[List["Cos", "[", SubscriptBox["x", "3"], "]"]]]]]]], RowBox[List["\[DifferentialD]", SubscriptBox["x", "3"]]], RowBox[List["\[DifferentialD]", SubscriptBox["x", "2"]]], RowBox[List["\[DifferentialD]", SubscriptBox["x", "1"]]]]]]]]]]], "\[Equal]", RowBox[List["4", FractionBox["\[Pi]", "\[CurlyEpsilon]"], SuperscriptBox[RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["\[CurlyEpsilon]", "2"]]]]]]], ")"]]]], "]"]], "2"]]]]], "/;", RowBox[List[RowBox[List["\[LeftBracketingBar]", "\[CurlyEpsilon]", "\[RightBracketingBar]"]], ">", "1"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> &#960; </mi> </msubsup> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> &#960; </mi> </msubsup> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> &#960; </mi> </msubsup> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> &#949; </mi> <mo> - </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> x </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> x </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> x </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <msub> <mi> x </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <msub> <mi> x </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <msub> <mi> x </mi> <mn> 1 </mn> </msub> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mi> &#949; </mi> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> &#949; </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> &#949; </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &gt; </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <apply> <ci> Subscript </ci> <ci> x </ci> <cn type='integer'> 3 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <pi /> </uplimit> <apply> <int /> <bvar> <apply> <ci> Subscript </ci> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <pi /> </uplimit> <apply> <int /> <bvar> <apply> <ci> Subscript </ci> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <pi /> </uplimit> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> &#949; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <cos /> <apply> <ci> Subscript </ci> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <cos /> <apply> <ci> Subscript </ci> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <cos /> <apply> <ci> Subscript </ci> <ci> x </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 4 </cn> <pi /> <apply> <power /> <ci> &#949; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> &#949; </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <gt /> <apply> <abs /> <ci> &#949; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[FractionBox["1", RowBox[List["\[CurlyEpsilon]_", "-", RowBox[List[RowBox[List["Cos", "[", SubscriptBox["x_", "1"], "]"]], " ", RowBox[List["Cos", "[", SubscriptBox["x_", "2"], "]"]], " ", RowBox[List["Cos", "[", SubscriptBox["x_", "3"], "]"]]]]]]], RowBox[List["\[DifferentialD]", SubscriptBox["x_", "3"]]], RowBox[List["\[DifferentialD]", SubscriptBox["x_", "2"]]], RowBox[List["\[DifferentialD]", SubscriptBox["x_", "1"]]]]]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["4", " ", "\[Pi]", " ", SuperscriptBox[RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["\[CurlyEpsilon]", "2"]]]]]]], ")"]]]], "]"]], "2"]]], "\[CurlyEpsilon]"], "/;", RowBox[List[RowBox[List["\[LeftBracketingBar]", "\[CurlyEpsilon]", "\[RightBracketingBar]"]], ">", "1"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18