|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.07.21.2772.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[1/(\[CurlyEpsilon] - Cos[Subscript[x, 1]] Cos[Subscript[x, 2]]
Cos[Subscript[x, 3]]), {Subscript[x, 1], 0, Pi},
{Subscript[x, 2], 0, Pi}, {Subscript[x, 3], 0, Pi}] ==
4 Pi EllipticK[SubPlus[k]] EllipticK[SubMinus[k]] +
2 I Pi (EllipticK[SubPlus[k]]^2 - EllipticK[SubMinus[k]]^2) /;
\[LeftBracketingBar] \[CurlyEpsilon] \[RightBracketingBar] < 1 &&
SubPlus[k] == (1/2) (1 + Sqrt[1 - \[CurlyEpsilon]^2]) &&
SubMinus[k] == (1/2) (1 - Sqrt[1 - \[CurlyEpsilon]^2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[FractionBox["1", RowBox[List["\[CurlyEpsilon]", "-", RowBox[List[RowBox[List["Cos", "[", SubscriptBox["x", "1"], "]"]], RowBox[List["Cos", "[", SubscriptBox["x", "2"], "]"]], RowBox[List["Cos", "[", SubscriptBox["x", "3"], "]"]]]]]]], RowBox[List["\[DifferentialD]", SubscriptBox["x", "3"]]], RowBox[List["\[DifferentialD]", SubscriptBox["x", "2"]]], RowBox[List["\[DifferentialD]", SubscriptBox["x", "1"]]]]]]]]]]], "\[Equal]", RowBox[List[RowBox[List["4", "\[Pi]", " ", RowBox[List["EllipticK", "[", SubscriptBox["k", "+"], "]"]], RowBox[List["EllipticK", "[", SubscriptBox["k", "-"], "]"]]]], "+", RowBox[List["2", "\[ImaginaryI]", " ", "\[Pi]", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["k", "+"], "]"]], "2"], "-", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["k", "-"], "]"]], "2"]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["\[LeftBracketingBar]", "\[CurlyEpsilon]", "\[RightBracketingBar]"]], "<", "1"]], "\[And]", RowBox[List[SubscriptBox["k", "+"], "\[Equal]", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["\[CurlyEpsilon]", "2"]]]]]], ")"]]]]]], "\[And]", RowBox[List[SubscriptBox["k", "-"], "\[Equal]", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", SuperscriptBox["\[CurlyEpsilon]", "2"]]]]]], ")"]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mi> π </mi> </msubsup> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mi> π </mi> </msubsup> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mi> π </mi> </msubsup> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> ε </mi> <mo> - </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> x </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> x </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> x </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <msub> <mi> x </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <msub> <mi> x </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <msub> <mi> x </mi> <mn> 1 </mn> </msub> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> k </mi> <mo> + </mo> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> k </mi> <mo> - </mo> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> k </mi> <mo> + </mo> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> k </mi> <mo> - </mo> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> ε </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> k </mi> <mo> + </mo> </msub> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> ε </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> k </mi> <mo> - </mo> </msub> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> ε </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <apply> <ci> Subscript </ci> <ci> x </ci> <cn type='integer'> 3 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <pi /> </uplimit> <apply> <int /> <bvar> <apply> <ci> Subscript </ci> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <pi /> </uplimit> <apply> <int /> <bvar> <apply> <ci> Subscript </ci> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <pi /> </uplimit> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> ε </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <cos /> <apply> <ci> Subscript </ci> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <cos /> <apply> <ci> Subscript </ci> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <cos /> <apply> <ci> Subscript </ci> <ci> x </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <pi /> <apply> <ci> EllipticK </ci> <apply> <ci> SubPlus </ci> <ci> k </ci> </apply> </apply> <apply> <ci> EllipticK </ci> <apply> <ci> SubMinus </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <apply> <plus /> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> SubPlus </ci> <ci> k </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> SubMinus </ci> <ci> k </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <abs /> <ci> ε </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> SubPlus </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> ε </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> SubMinus </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> ε </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[FractionBox["1", RowBox[List["\[CurlyEpsilon]_", "-", RowBox[List[RowBox[List["Cos", "[", SubscriptBox["x_", "1"], "]"]], " ", RowBox[List["Cos", "[", SubscriptBox["x_", "2"], "]"]], " ", RowBox[List["Cos", "[", SubscriptBox["x_", "3"], "]"]]]]]]], RowBox[List["\[DifferentialD]", SubscriptBox["x_", "3"]]], RowBox[List["\[DifferentialD]", SubscriptBox["x_", "2"]]], RowBox[List["\[DifferentialD]", SubscriptBox["x_", "1"]]]]]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["4", " ", "\[Pi]", " ", RowBox[List["EllipticK", "[", SubscriptBox["k", "+"], "]"]], " ", RowBox[List["EllipticK", "[", SubscriptBox["k", "-"], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["k", "+"], "]"]], "2"], "-", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["k", "-"], "]"]], "2"]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["\[LeftBracketingBar]", "\[CurlyEpsilon]", "\[RightBracketingBar]"]], "<", "1"]], "&&", RowBox[List[SubscriptBox["k", "+"], "\[Equal]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["\[CurlyEpsilon]", "2"]]]]]], ")"]]]]]], "&&", RowBox[List[SubscriptBox["k", "-"], "\[Equal]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", SuperscriptBox["\[CurlyEpsilon]", "2"]]]]]], ")"]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|