| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.04.20.0015.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | D[Log[z]^n, {z, \[Alpha]}] == 
  Piecewise[{{((-1)^(\[Alpha] - 1) n! Sum[(Log[z]^(u - i)/(u - i)!) 
         (Derivative[n - 1 - u][Gamma][1]/(n - 1 - u)!) 
         Sum[Subscript[a, v] Subscript[b, i - v], {v, 0, i}], {u, 0, n - 1}, 
        {i, 0, u}])/z^\[Alpha], Element[\[Alpha], Integers] && 
      \[Alpha] > 0}}, D[(Gamma[1 + a]/Gamma[1 + a - \[Alpha]]) 
      z^(a - \[Alpha]), {a, n}] /; a == 0] /; 
 Element[n, Integers] && n > 0 && Subscript[a, 2 k] == 
   ((-1)^k Pi^(2 k))/(2 k + 1)! && Subscript[a, 2 k + 1] == 0 && 
  Subscript[b, k] == ((-1)^k Derivative[k][Gamma][\[Alpha]])/k! && 
  Element[k, Integers] && k > 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "n"]]], "\[Equal]", RowBox[List["Piecewise", "[", RowBox[List[RowBox[List["{", RowBox[List["{", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["\[Alpha]", "-", "1"]]], SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], RowBox[List["n", "!"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "u"], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], RowBox[List["u", "-", "i"]]], RowBox[List[RowBox[List["(", RowBox[List["u", "-", "i"]], ")"]], "!"]]], FractionBox[RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", RowBox[List["n", "-", "1", "-", "u"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", "1", "]"]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1", "-", "u"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["v", "=", "0"]], "i"], RowBox[List[SubscriptBox["a", "v"], " ", SubscriptBox["b", RowBox[List["i", "-", "v"]]]]]]], ")"]]]]]]]]]], ",", RowBox[List[RowBox[List["Element", "[", RowBox[List["\[Alpha]", ",", "Integers"]], "]"]], "\[And]", RowBox[List["\[Alpha]", ">", "0"]]]]]], "}"]], "}"]], ",", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["a", ",", "n"]], "}"]]], RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]], " "]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]], SuperscriptBox["z", RowBox[List["a", "-", "\[Alpha]"]]]]], ")"]]]], ")"]], "/;", RowBox[List["a", "\[Equal]", "0"]]]]]], "]"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]], "\[And]", RowBox[List[SubscriptBox["a", RowBox[List["2", "k"]]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[Pi]", RowBox[List["2", "k"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "+", "1"]], ")"]], "!"]]]]], "\[And]", RowBox[List[SubscriptBox["a", RowBox[List[RowBox[List["2", "k"]], "+", "1"]]], "\[Equal]", "0"]], "\[And]", RowBox[List[SubscriptBox["b", "k"], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", "k", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "\[Alpha]", "]"]]]], RowBox[List["k", "!"]]]]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", ">", "0"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mfrac>  <mrow>  <msup>  <mo> ∂ </mo>  <mi> α </mi>  </msup>  <mrow>  <msup>  <mi> log </mi>  <mi> n </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mo> ∂ </mo>  <msup>  <mi> z </mi>  <mi> α </mi>  </msup>  </mrow>  </mfrac>  <mo>  </mo>  <mrow>  <mo>  </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> α </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mo> - </mo>  <mi> α </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> u </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> i </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> u </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <msup>  <mi> log </mi>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mi> i </mi>  </mrow>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> Γ </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> u </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", RowBox[List["n", "-", "u", "-", "1"]], ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mn> 1 </mn>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mi> i </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> u </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> v </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> i </mi>  </munderover>  <mrow>  <msub>  <mi> a </mi>  <mi> v </mi>  </msub>  <mo> ⁢ </mo>  <msub>  <mi> b </mi>  <mrow>  <mi> i </mi>  <mo> - </mo>  <mi> v </mi>  </mrow>  </msub>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mtd>  <mtd>  <mrow>  <mi> α </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mfrac>  <mrow>  <msup>  <mo> ∂ </mo>  <mi> n </mi>  </msup>  <mfrac>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mi> α </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mi> α </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mfrac>  </mrow>  <mrow>  <mo> ∂ </mo>  <msup>  <mi> a </mi>  <mi> n </mi>  </msup>  </mrow>  </mfrac>  <mo> /; </mo>  <mrow>  <mi> a </mi>  <mo>  </mo>  <mn> 0 </mn>  </mrow>  </mrow>  </mtd>  <mtd>  <semantics>  <mi> True </mi>  <annotation encoding='Mathematica'> TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]] </annotation>  </semantics>  </mtd>  </mtr>  </mtable>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> a </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </msub>  <mo>  </mo>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> π </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> a </mi>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo>  </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  <mo>  </mo>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> Γ </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mi> k </mi>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "k", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> α </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  </mfrac>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> k </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <ci> α </ci>  </degree>  </bvar>  <apply>  <power />  <apply>  <ln />  <ci> z </ci>  </apply>  <ci> n </ci>  </apply>  </apply>  <piecewise>  <piece>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> α </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> α </ci>  </apply>  </apply>  <apply>  <factorial />  <ci> n </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> i </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> u </ci>  </uplimit>  <apply>  <sum />  <bvar>  <ci> u </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <apply>  <ln />  <ci> z </ci>  </apply>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> i </ci>  </apply>  </apply>  </apply>  <apply>  <ci> D </ci>  <apply>  <ci> Gamma </ci>  <cn type='integer'> 1 </cn>  </apply>  <list>  <cn type='integer'> 1 </cn>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </list>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <factorial />  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> i </ci>  </apply>  </apply>  </apply>  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> v </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> i </ci>  </uplimit>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <ci> v </ci>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <apply>  <plus />  <ci> i </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> α </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  </piece>  <otherwise>  <apply>  <ci> Condition </ci>  <apply>  <partialdiff />  <bvar>  <ci> a </ci>  <degree>  <ci> n </ci>  </degree>  </bvar>  <apply>  <times />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> α </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> α </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <eq />  <ci> a </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </otherwise>  </piecewise>  </apply>  <apply>  <and />  <apply>  <in />  <ci> n </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  <apply>  <eq />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <power />  <pi />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <eq />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <eq />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> α </ci>  <degree>  <ci> k </ci>  </degree>  </bvar>  <apply>  <ci> Gamma </ci>  <ci> α </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> k </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], SuperscriptBox[RowBox[List["Log", "[", "z_", "]"]], "n_"]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["\[Piecewise]", GridBox[List[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["\[Alpha]", "-", "1"]]], " ", SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "u"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], RowBox[List["u", "-", "i"]]], " ", RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", RowBox[List["n", "-", "1", "-", "u"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", "1", "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["v", "=", "0"]], "i"], RowBox[List[SubscriptBox["a", "v"], " ", SubscriptBox["b", RowBox[List["i", "-", "v"]]]]]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["u", "-", "i"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1", "-", "u"]], ")"]], "!"]]]]]]]]]]], RowBox[List[RowBox[List["\[Alpha]", "\[Element]", "Integers"]], "&&", RowBox[List["\[Alpha]", ">", "0"]]]]], List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "n"]], "}"]]]]], FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]], " ", SuperscriptBox["z", RowBox[List["a", "-", "\[Alpha]"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]]], "/;", RowBox[List["a", "\[Equal]", "0"]]]], TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]]]], Rule[ColumnAlignments, List[Left]], Rule[ColumnSpacings, 1.2`], Rule[ColumnWidths, Automatic]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]], "&&", RowBox[List[SubscriptBox["a", RowBox[List["2", " ", "k"]]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[Pi]", RowBox[List["2", " ", "k"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], "!"]]]]], "&&", RowBox[List[SubscriptBox["a", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]], "\[Equal]", "0"]], "&&", RowBox[List[SubscriptBox["b", "k"], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", "k", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "\[Alpha]", "]"]]]], RowBox[List["k", "!"]]]]], "&&", RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", ">", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |