|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.04.20.0024.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[z^a Log[z]^3, {z, \[Alpha]}] ==
Piecewise[{{(-1)^(-a + \[Alpha]) Gamma[1 + a] Gamma[-a + \[Alpha]]
(Pi^2 - 3 (Log[z] + PolyGamma[1 + a] - PolyGamma[-a + \[Alpha]])^2 -
3 PolyGamma[1, 1 + a] - 3 PolyGamma[1, -a + \[Alpha]])
z^(a - \[Alpha]), Element[\[Alpha] - a, Integers] && \[Alpha] - a > 0},
{(((-1)^(a - 1) z^(a - \[Alpha]))/(60 (-1 - a)! Gamma[1 + a - \[Alpha]]))
(15 Log[z]^4 + 60 Log[z]^3 (PolyGamma[-a] -
PolyGamma[1 + a - \[Alpha]]) + 30 Log[z]^2
(Pi^2 + 3 PolyGamma[-a]^2 - 6 PolyGamma[-a]
PolyGamma[1 + a - \[Alpha]] + 3 PolyGamma[1 + a - \[Alpha]]^2 -
3 PolyGamma[1, -a] - 3 PolyGamma[1, 1 + a - \[Alpha]]) +
60 Log[z] (PolyGamma[-a]^3 - 3 PolyGamma[-a]^2
PolyGamma[1 + a - \[Alpha]] - PolyGamma[1 + a - \[Alpha]]^3 +
PolyGamma[-a] (Pi^2 + 3 PolyGamma[1 + a - \[Alpha]]^2 -
3 PolyGamma[1, -a] - 3 PolyGamma[1, 1 + a - \[Alpha]]) +
PolyGamma[1 + a - \[Alpha]] (-Pi^2 + 3 PolyGamma[1, -a] +
3 PolyGamma[1, 1 + a - \[Alpha]]) + PolyGamma[2, -a] -
PolyGamma[2, 1 + a - \[Alpha]]) + 7 Pi^4 + 15 PolyGamma[-a]^4 -
60 PolyGamma[-a]^3 PolyGamma[1 + a - \[Alpha]] +
15 PolyGamma[1 + a - \[Alpha]]^4 - 30 Pi^2 PolyGamma[1, -a] +
45 PolyGamma[1, -a]^2 + 30 PolyGamma[1 + a - \[Alpha]]^2
(Pi^2 - 3 PolyGamma[1, -a] - 3 PolyGamma[1, 1 + a - \[Alpha]]) +
30 PolyGamma[-a]^2 (Pi^2 + 3 PolyGamma[1 + a - \[Alpha]]^2 -
3 PolyGamma[1, -a] - 3 PolyGamma[1, 1 + a - \[Alpha]]) -
30 Pi^2 PolyGamma[1, 1 + a - \[Alpha]] + 90 PolyGamma[1, -a]
PolyGamma[1, 1 + a - \[Alpha]] + 45 PolyGamma[1, 1 + a - \[Alpha]]^2 -
60 PolyGamma[1 + a - \[Alpha]] (PolyGamma[2, -a] -
PolyGamma[2, 1 + a - \[Alpha]]) - 60 PolyGamma[-a]
(PolyGamma[1 + a - \[Alpha]]^3 + PolyGamma[1 + a - \[Alpha]]
(Pi^2 - 3 PolyGamma[1, -a] - 3 PolyGamma[1, 1 + a - \[Alpha]]) -
PolyGamma[2, -a] + PolyGamma[2, 1 + a - \[Alpha]]) -
15 PolyGamma[3, -a] - 15 PolyGamma[3, 1 + a - \[Alpha]]),
Element[-a, Integers] && -a > 0}}, (Gamma[1 + a]/Gamma[1 + a - \[Alpha]])
(Log[z]^3 + 3 Log[z]^2 (PolyGamma[1 + a] - PolyGamma[1 + a - \[Alpha]]) +
3 Log[z] (PolyGamma[1 + a]^2 - 2 PolyGamma[1 + a]
PolyGamma[1 + a - \[Alpha]] + PolyGamma[1 + a - \[Alpha]]^2 +
PolyGamma[1, 1 + a] - PolyGamma[1, 1 + a - \[Alpha]]) +
PolyGamma[1 + a]^3 - 3 PolyGamma[1 + a]^2 PolyGamma[1 + a - \[Alpha]] -
PolyGamma[1 + a - \[Alpha]]^3 - 3 PolyGamma[1 + a - \[Alpha]]
(PolyGamma[1, 1 + a] - PolyGamma[1, 1 + a - \[Alpha]]) +
3 PolyGamma[1 + a] (PolyGamma[1 + a - \[Alpha]]^2 + PolyGamma[1, 1 + a] -
PolyGamma[1, 1 + a - \[Alpha]]) + PolyGamma[2, 1 + a] -
PolyGamma[2, 1 + a - \[Alpha]]) z^(a - \[Alpha])]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], RowBox[List["(", RowBox[List[SuperscriptBox["z", "a"], " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "3"]]], ")"]]]], "\[Equal]", RowBox[List["Piecewise", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "a"]], "+", "\[Alpha]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "a"]], "+", "\[Alpha]"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "-", RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "a"]], "+", "\[Alpha]"]], "]"]]]], ")"]], "2"]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List[RowBox[List["-", "a"]], "+", "\[Alpha]"]]]], "]"]]]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["a", "-", "\[Alpha]"]]]]], ",", RowBox[List[RowBox[List["Element", "[", RowBox[List[RowBox[List["\[Alpha]", "-", "a"]], ",", "Integers"]], "]"]], "\[And]", RowBox[List[RowBox[List["\[Alpha]", "-", "a"]], ">", "0"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["a", "-", "1"]]], " ", SuperscriptBox["z", RowBox[List["a", "-", "\[Alpha]"]]]]], RowBox[List["60", " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "a"]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["15", " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "4"]]], "+", RowBox[List["60", " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], ")"]]]], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "2"]]], "-", RowBox[List["6", " ", RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "2"]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["60", " ", RowBox[List["Log", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "3"], "-", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "2"], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], "-", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "3"], "+", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "2"]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[Pi]", "2"]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["-", "a"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], ")"]]]], "+", RowBox[List["7", " ", SuperscriptBox["\[Pi]", "4"]]], "+", RowBox[List["15", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "4"]]], "-", RowBox[List["60", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "3"], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], "+", RowBox[List["15", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "4"]]], "-", RowBox[List["30", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]]]], "+", RowBox[List["45", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]], "2"]]], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "2"]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]]]], ")"]]]], "-", RowBox[List["30", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], "+", RowBox[List["90", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], "+", RowBox[List["45", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]], "2"]]], "-", RowBox[List["60", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["-", "a"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], ")"]]]], "-", RowBox[List["60", " ", RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "3"], "+", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]]]], ")"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["-", "a"]]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], ")"]]]], "-", RowBox[List["15", " ", RowBox[List["PolyGamma", "[", RowBox[List["3", ",", RowBox[List["-", "a"]]]], "]"]]]], "-", RowBox[List["15", " ", RowBox[List["PolyGamma", "[", RowBox[List["3", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]]]], ")"]]]], ",", RowBox[List[RowBox[List["Element", "[", RowBox[List[RowBox[List["-", "a"]], ",", "Integers"]], "]"]], "\[And]", RowBox[List[RowBox[List["-", "a"]], ">", "0"]]]]]], "}"]]]], "}"]], ",", RowBox[List[FractionBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "3"], "+", RowBox[List["3", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], ")"]]]], "+", RowBox[List["3", RowBox[List["Log", "[", "z", "]"]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], ")"]]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]], "3"], "-", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]], "2"], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], "-", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "3"], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], ")"]]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], ")"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["1", "+", "a"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], ")"]], SuperscriptBox["z", RowBox[List["a", "-", "\[Alpha]"]]]]]]], " ", "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> α </mi> </msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mi> a </mi> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> z </mi> <mi> α </mi> </msup> </mrow> </mfrac> <mo>  </mo> <mrow> <mo>  </mo> <mtable> <mtr> <mtd> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> α </mi> <mo> - </mo> <mi> a </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> α </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> α </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> α </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> </mrow> </msup> </mrow> </mtd> <mtd> <mrow> <mrow> <mi> α </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 30 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> + </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 45 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 45 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 30 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 30 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 90 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 30 </mn> <mo> ⁢ </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 30 </mn> <mo> ⁢ </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> </mrow> </msup> </mrow> </mtd> <mtd> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> - </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> </mrow> </msup> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> </mtd> <mtd> <semantics> <mi> True </mi> <annotation encoding='Mathematica'> TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]] </annotation> </semantics> </mtd> </mtr> </mtable> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> α </ci> </degree> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> a </ci> </apply> <apply> <power /> <apply> <ln /> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <piecewise> <piece> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> α </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> α </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -3 </cn> <apply> <power /> <apply> <plus /> <apply> <ln /> <ci> z </ci> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> α </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> α </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <plus /> <ci> α </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <apply> <ln /> <ci> z </ci> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ln /> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ln /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <plus /> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 45 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 45 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 90 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 3 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </piece> <otherwise> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ln /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </otherwise> </piecewise> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["z_", "a_"], " ", SuperscriptBox[RowBox[List["Log", "[", "z_", "]"]], "3"]]], ")"]]]], "]"]], "\[RuleDelayed]", RowBox[List["\[Piecewise]", GridBox[List[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "a"]], "+", "\[Alpha]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "a"]], "+", "\[Alpha]"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "-", RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "a"]], "+", "\[Alpha]"]], "]"]]]], ")"]], "2"]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List[RowBox[List["-", "a"]], "+", "\[Alpha]"]]]], "]"]]]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["a", "-", "\[Alpha]"]]]]], RowBox[List[RowBox[List[RowBox[List["\[Alpha]", "-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["\[Alpha]", "-", "a"]], ">", "0"]]]]], List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["a", "-", "1"]]], " ", SuperscriptBox["z", RowBox[List["a", "-", "\[Alpha]"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["15", " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "4"]]], "+", RowBox[List["60", " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], ")"]]]], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "2"]]], "-", RowBox[List["6", " ", RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "2"]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["60", " ", RowBox[List["Log", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "3"], "-", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "2"], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], "-", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "3"], "+", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "2"]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[Pi]", "2"]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["-", "a"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], ")"]]]], "+", RowBox[List["7", " ", SuperscriptBox["\[Pi]", "4"]]], "+", RowBox[List["15", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "4"]]], "-", RowBox[List["60", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "3"], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], "+", RowBox[List["15", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "4"]]], "-", RowBox[List["30", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]]]], "+", RowBox[List["45", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]], "2"]]], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "2"]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]]]], ")"]]]], "-", RowBox[List["30", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], "+", RowBox[List["90", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], "+", RowBox[List["45", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]], "2"]]], "-", RowBox[List["60", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["-", "a"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], ")"]]]], "-", RowBox[List["60", " ", RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "3"], "+", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]]]], ")"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["-", "a"]]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], ")"]]]], "-", RowBox[List["15", " ", RowBox[List["PolyGamma", "[", RowBox[List["3", ",", RowBox[List["-", "a"]]]], "]"]]]], "-", RowBox[List["15", " ", RowBox[List["PolyGamma", "[", RowBox[List["3", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]]]], ")"]]]], RowBox[List["60", " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "a"]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "a"]], ">", "0"]]]]], List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "3"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], ")"]]]], "+", RowBox[List["3", " ", RowBox[List["Log", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], ")"]]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]], "3"], "-", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]], "2"], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], "-", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "3"], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], ")"]]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], ")"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["1", "+", "a"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["a", "-", "\[Alpha]"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]], TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]]]], Rule[ColumnAlignments, List[Left]], Rule[ColumnSpacings, 1.2`], Rule[ColumnWidths, Automatic]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|