Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Log






Mathematica Notation

Traditional Notation









Elementary Functions > Log[z] > Integration > Indefinite integration > Involving the direct function





http://functions.wolfram.com/01.04.21.0004.01









  


  










Input Form





Integrate[Log[z]/Sqrt[c z^2 + d], z] == (1/(2 Sqrt[c/d] Sqrt[d + c z^2])) (Sqrt[1 + (c z^2)/d] (-ArcSinh[Sqrt[c/d] z]^2 - 2 ArcSinh[Sqrt[c/d] z] Log[1 - E^(-2 ArcSinh[Sqrt[c/d] z])] + 2 Log[z] Log[Sqrt[c/d] z + Sqrt[1 + (c z^2)/d]] + PolyLog[2, E^(-2 ArcSinh[Sqrt[c/d] z])]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Log", "[", "z", "]"]], SqrtBox[RowBox[List[RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "+", "d"]]]], RowBox[List["\[DifferentialD]", " ", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", " ", SqrtBox[FractionBox["c", "d"]], " ", SqrtBox[RowBox[List["d", "+", RowBox[List["c", " ", SuperscriptBox["z", "2"]]]]]]]]], RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "d"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox["c", "d"]], " ", "z"]], "]"]], "2"]]], "-", RowBox[List["2", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox["c", "d"]], " ", "z"]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox["c", "d"]], " ", "z"]], "]"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", "z", "]"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox[FractionBox["c", "d"]], " ", "z"]], "+", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "d"]]]]]], "]"]]]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox["c", "d"]], " ", "z"]], "]"]]]]]]], "]"]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <msqrt> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> d </mi> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mfrac> <mi> c </mi> <mi> d </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> d </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mi> d </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mi> c </mi> <mi> d </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mi> c </mi> <mi> d </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mi> c </mi> <mi> d </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mfrac> <mi> c </mi> <mi> d </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mi> d </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mi> c </mi> <mi> d </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <ln /> <ci> z </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> d </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> d </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Log", "[", "z_", "]"]], SqrtBox[RowBox[List[RowBox[List["c_", " ", SuperscriptBox["z_", "2"]]], "+", "d_"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "d"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox["c", "d"]], " ", "z"]], "]"]], "2"]]], "-", RowBox[List["2", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox["c", "d"]], " ", "z"]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox["c", "d"]], " ", "z"]], "]"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", "z", "]"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox[FractionBox["c", "d"]], " ", "z"]], "+", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "d"]]]]]], "]"]]]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox["c", "d"]], " ", "z"]], "]"]]]]]]], "]"]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[FractionBox["c", "d"]], " ", SqrtBox[RowBox[List["d", "+", RowBox[List["c", " ", SuperscriptBox["z", "2"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29