|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.04.21.0029.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Log[Sin[z] + a], z] ==
(1/8) ((-I) (Pi - 2 z)^2 + 32 I ArcSin[Sqrt[1 + a]/Sqrt[2]]
ArcTan[((-1 + a) Tan[(1/4) (Pi - 2 z)])/Sqrt[-1 + a^2]] +
4 (Pi - 2 z + 4 ArcSin[Sqrt[1 + a]/Sqrt[2]])
Log[1 + (I (a - Sqrt[-1 + a^2]))/E^(I z)] +
4 (Pi - 2 z - 4 ArcSin[Sqrt[1 + a]/Sqrt[2]])
Log[1 + (I (a + Sqrt[-1 + a^2]))/E^(I z)] -
4 (Pi - 2 z) Log[a + Sin[z]] -
8 I (PolyLog[2, (I (-a + Sqrt[-1 + a^2]))/E^(I z)] +
PolyLog[2, ((-I) (a + Sqrt[-1 + a^2]))/E^(I z)]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Log", "[", RowBox[List[RowBox[List["Sin", "[", "z", "]"]], "+", "a"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "z"]]]], ")"]], "2"]]], "+", RowBox[List["32", " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", FractionBox[SqrtBox[RowBox[List["1", "+", "a"]]], SqrtBox["2"]], "]"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "z"]]]], ")"]]]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["a", "2"]]]]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "z"]], "+", RowBox[List["4", " ", RowBox[List["ArcSin", "[", FractionBox[SqrtBox[RowBox[List["1", "+", "a"]]], SqrtBox["2"]], "]"]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "-", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["a", "2"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]]]]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "z"]], "-", RowBox[List["4", " ", RowBox[List["ArcSin", "[", FractionBox[SqrtBox[RowBox[List["1", "+", "a"]]], SqrtBox["2"]], "]"]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["a", "2"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]]]]], "]"]]]], "-", RowBox[List["4", " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["a", "+", RowBox[List["Sin", "[", "z", "]"]]]], "]"]]]], "-", RowBox[List["8", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["a", "2"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["a", "2"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]]]]], "]"]]]], ")"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> π </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> π </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> π </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <ln /> <apply> <plus /> <ci> a </ci> <apply> <sin /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ln /> <apply> <plus /> <ci> a </ci> <apply> <sin /> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 32 </cn> <imaginaryi /> <apply> <arcsin /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <arctan /> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <tan /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <arcsin /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <arcsin /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <imaginaryi /> <apply> <plus /> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["Log", "[", RowBox[List[RowBox[List["Sin", "[", "z_", "]"]], "+", "a_"]], "]"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "z"]]]], ")"]], "2"]]], "+", RowBox[List["32", " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", FractionBox[SqrtBox[RowBox[List["1", "+", "a"]]], SqrtBox["2"]], "]"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "z"]]]], ")"]]]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["a", "2"]]]]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "z"]], "+", RowBox[List["4", " ", RowBox[List["ArcSin", "[", FractionBox[SqrtBox[RowBox[List["1", "+", "a"]]], SqrtBox["2"]], "]"]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "-", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["a", "2"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]]]]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "z"]], "-", RowBox[List["4", " ", RowBox[List["ArcSin", "[", FractionBox[SqrtBox[RowBox[List["1", "+", "a"]]], SqrtBox["2"]], "]"]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["a", "2"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]]]]], "]"]]]], "-", RowBox[List["4", " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["a", "+", RowBox[List["Sin", "[", "z", "]"]]]], "]"]]]], "-", RowBox[List["8", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["a", "2"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["a", "2"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]]]]], "]"]]]], ")"]]]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|