| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.04.21.0032.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[Log[Sin[z]^2 + a], z] == 
 (1/2) (2 I z^2 + 4 I ArcSin[Sqrt[-a]] 
    ArcTan[((1 + a) Tan[z])/Sqrt[a (1 + a)]] - 2 (z - ArcSin[Sqrt[-a]]) 
    Log[1 + (-1 - 2 a + 2 Sqrt[a (1 + a)]) E^(2 I z)] - 
   2 (z + ArcSin[Sqrt[-a]]) Log[1 - (1 + 2 a + 2 Sqrt[a (1 + a)]) 
       E^(2 I z)] + 2 z Log[a + Sin[z]^2] + 
   I (PolyLog[2, (1 + 2 a - 2 Sqrt[a (1 + a)]) E^(2 I z)] + 
     PolyLog[2, (1 + 2 a + 2 Sqrt[a (1 + a)]) E^(2 I z)])) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Log", "[", RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"], "+", "a"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List["-", "a"]]], "]"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", RowBox[List["Tan", "[", "z", "]"]]]], SqrtBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["z", "-", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List["-", "a"]]], "]"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]]]]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["z", "+", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List["-", "a"]]], "]"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]]]]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["Log", "[", RowBox[List["a", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "a"]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]]]]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]]]]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]]]]]], "]"]]]], ")"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> sin </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mi> a </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> sin </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mi> a </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sin </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  </msqrt>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> tan </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <msqrt>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mrow>  <msup>  <mi> sin </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  </msqrt>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mrow>  <msup>  <mi> sin </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  </msqrt>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <semantics>  <mi> Li </mi>  <annotation-xml encoding='MathML-Content'>  <ci> PolyLog </ci>  </annotation-xml>  </semantics>  <mn> 2 </mn>  </msub>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <msub>  <semantics>  <mi> Li </mi>  <annotation-xml encoding='MathML-Content'>  <ci> PolyLog </ci>  </annotation-xml>  </semantics>  <mn> 2 </mn>  </msub>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ln />  <apply>  <plus />  <apply>  <power />  <apply>  <sin />  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <ci> a </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ln />  <apply>  <plus />  <apply>  <power />  <apply>  <sin />  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <ci> a </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <imaginaryi />  <apply>  <arcsin />  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <arctan />  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <tan />  <ci> z </ci>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <times />  <ci> a </ci>  <apply>  <plus />  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <arcsin />  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <ci> a </ci>  <apply>  <plus />  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> z </ci>  <apply>  <arcsin />  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ln />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <ci> a </ci>  <apply>  <plus />  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <apply>  <ci> PolyLog </ci>  <cn type='integer'> 2 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <ci> a </ci>  <apply>  <plus />  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> PolyLog </ci>  <cn type='integer'> 2 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <ci> a </ci>  <apply>  <plus />  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["Log", "[", RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", "z_", "]"]], "2"], "+", "a_"]], "]"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List["-", "a"]]], "]"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", RowBox[List["Tan", "[", "z", "]"]]]], SqrtBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["z", "-", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List["-", "a"]]], "]"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]]]]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["z", "+", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List["-", "a"]]], "]"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]]]]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["Log", "[", RowBox[List["a", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "a"]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]]]]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]]]]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]]]]]], "]"]]]], ")"]]]]]], ")"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |