Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Log






Mathematica Notation

Traditional Notation









Elementary Functions > Log[z] > Integration > Indefinite integration > Involving the direct function





http://functions.wolfram.com/01.04.21.0033.01









  


  










Input Form





Integrate[z Log[2 Sin[z/2]], z] == (1/12) I (Pi^3 - z^3 + 6 I z^2 Log[1 - E^((-I) z)] - 6 I z^2 Log[2 Sin[z/2]] - 12 z PolyLog[2, E^((-I) z)] + 12 I PolyLog[3, E^((-I) z)])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List["z", " ", RowBox[List["Log", "[", RowBox[List["2", RowBox[List["Sin", "[", FractionBox["z", "2"], "]"]]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "12"], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "3"], "-", SuperscriptBox["z", "3"], "+", RowBox[List["6", " ", "\[ImaginaryI]", " ", SuperscriptBox["z", "2"], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]]], "]"]]]], "-", RowBox[List["6", " ", "\[ImaginaryI]", " ", SuperscriptBox["z", "2"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", RowBox[List["Sin", "[", FractionBox["z", "2"], "]"]]]], "]"]]]], "-", RowBox[List["12", " ", "z", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]]], "]"]]]], "+", RowBox[List["12", " ", "\[ImaginaryI]", " ", RowBox[List["PolyLog", "[", RowBox[List["3", ",", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mi> &#8520; </mi> <mn> 12 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <msup> <mi> &#960; </mi> <mn> 3 </mn> </msup> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <ci> z </ci> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <sin /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 12 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <imaginaryi /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <imaginaryi /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <sin /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <imaginaryi /> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["z_", " ", RowBox[List["Log", "[", RowBox[List["2", " ", RowBox[List["Sin", "[", FractionBox["z_", "2"], "]"]]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "12"], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "3"], "-", SuperscriptBox["z", "3"], "+", RowBox[List["6", " ", "\[ImaginaryI]", " ", SuperscriptBox["z", "2"], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]]], "]"]]]], "-", RowBox[List["6", " ", "\[ImaginaryI]", " ", SuperscriptBox["z", "2"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", RowBox[List["Sin", "[", FractionBox["z", "2"], "]"]]]], "]"]]]], "-", RowBox[List["12", " ", "z", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]]], "]"]]]], "+", RowBox[List["12", " ", "\[ImaginaryI]", " ", RowBox[List["PolyLog", "[", RowBox[List["3", ",", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]]], "]"]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29