Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Log






Mathematica Notation

Traditional Notation









Elementary Functions > Log[a,z] > Visualizations





3D plots in the coordinate planes (136 graphics)


Over the Re(a)Re(z)-plane

The real part, the imaginary part, the absolute value, and the argument of the function over the ‐plane.

The real part, the imaginary part, the absolute value, and the argument of the function over the ‐plane around .

The real part, the imaginary part, the absolute value, and the argument of the function over the ‐plane around .

The real part, the imaginary part, the absolute value, and the argument of the function over the ‐plane around and .

Over the Re(a)Im(z)-plane

The real part, the imaginary part, the absolute value, and the argument of the function over the ‐plane.

The real part, the imaginary part, the absolute value, and the argument of the function over the ‐plane around .

The real part, the imaginary part, the absolute value, and the argument of the function over the ‐plane around .

The real part, the imaginary part, the absolute value, and the argument of the function over the ‐plane around and .

Over the Im(a)Re(z)-plane

The real part, the imaginary part, the absolute value, and the argument of the function over the ‐plane.

The real part, the imaginary part, the absolute value, and the argument of the function over the ‐plane around .

The real part, the imaginary part, the absolute value, and the argument of the function over the ‐plane around .

The real part, the imaginary part, the absolute value, and the argument of the function over the ‐plane around and .

Over the Im(a)Im(z)-plane

The real part, the imaginary part, the absolute value, and the argument of the function over the ‐plane.

The real part, the imaginary part, the absolute value, and the argument of the function over the ‐plane around .

The real part, the imaginary part, the absolute value, and the argument of the function over the ‐plane around .

The real part, the imaginary part, the absolute value, and the argument of the function over the ‐plane around and .

Over the unit circle planes

The real part, the imaginary part, the absolute value, and the argument of the function over the ‐unit circle, ‐unit circle‐plane.