Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Max






Mathematica Notation

Traditional Notation









Elementary Functions > Max[x1 ,x2,...] > Representations through equivalent functions





http://functions.wolfram.com/01.34.27.0003.01









  


  










Input Form





Max[Subscript[x, 1], Subscript[x, 2], \[Ellipsis], Subscript[x, n]] == Sum[Subscript[x, Subscript[k, 1]], {Subscript[k, 1], 1, n}] - Sum[Min[Subscript[x, Subscript[k, 1]], Subscript[x, Subscript[k, 2]]], {Subscript[k, 1], 1, n}, {Subscript[k, 2], Subscript[k, 1] + 1, n}] + Sum[Min[Subscript[x, Subscript[k, 1]], Subscript[x, Subscript[k, 2]], Subscript[x, Subscript[k, 3]]], {Subscript[k, 1], 1, n}, {Subscript[k, 2], Subscript[k, 1] + 1, n}, {Subscript[k, 3], Subscript[k, 2] + 1, n}] - \[Ellipsis] + (-1)^(j + 1) Sum[\[Ellipsis] Sum[Min[Subscript[x, Subscript[k, 1]], Subscript[x, Subscript[k, 2]], \[Ellipsis], Subscript[x, Subscript[k, j]]], {Subscript[k, j], Subscript[k, j - 1] + 1, n}], {Subscript[k, 1], 1, n}, {Subscript[k, 2], Subscript[k, 1] + 1, n}] + \[Ellipsis] + (-1)^(n + 1) Sum[\[Ellipsis] Sum[Min[Subscript[x, Subscript[k, 1]], Subscript[x, Subscript[k, 2]], \[Ellipsis], Subscript[x, Subscript[k, n]]], {Subscript[k, n], Subscript[k, n - 1] + 1, n}], {Subscript[k, 1], 1, n}, {Subscript[k, 2], Subscript[k, 1] + 1, n}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Max", "[", RowBox[List[SubscriptBox["x", "1"], ",", SubscriptBox["x", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["x", "n"]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "1"]], "n"], SubscriptBox["x", SubscriptBox["k", "1"]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "1"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", RowBox[List[SubscriptBox["k", "1"], "+", "1"]]]], "n"], RowBox[List["Min", "[", RowBox[List[SubscriptBox["x", SubscriptBox["k", "1"]], ",", SubscriptBox["x", SubscriptBox["k", "2"]]]], "]"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "1"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", RowBox[List[SubscriptBox["k", "1"], "+", "1"]]]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "3"], "=", RowBox[List[SubscriptBox["k", "2"], "+", "1"]]]], "n"], RowBox[List["Min", "[", RowBox[List[SubscriptBox["x", SubscriptBox["k", "1"]], ",", SubscriptBox["x", SubscriptBox["k", "2"]], ",", SubscriptBox["x", SubscriptBox["k", "3"]]]], "]"]]]]]]]], "-", "\[Ellipsis]", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "1"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", RowBox[List[SubscriptBox["k", "1"], "+", "1"]]]], "n"], RowBox[List["\[Ellipsis]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "j"], "=", RowBox[List[SubscriptBox["k", RowBox[List["j", "-", "1"]]], "+", "1"]]]], "n"], RowBox[List["Min", "[", RowBox[List[SubscriptBox["x", SubscriptBox["k", "1"]], ",", SubscriptBox["x", SubscriptBox["k", "2"]], ",", "\[Ellipsis]", ",", SubscriptBox["x", SubscriptBox["k", "j"]]]], "]"]]]]]]]]]]]], "+", "\[Ellipsis]", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "+", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "1"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", RowBox[List[SubscriptBox["k", "1"], "+", "1"]]]], "n"], RowBox[List["\[Ellipsis]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "n"], "=", RowBox[List[SubscriptBox["k", RowBox[List["n", "-", "1"]]], "+", "1"]]]], "n"], RowBox[List["Min", "[", RowBox[List[SubscriptBox["x", SubscriptBox["k", "1"]], ",", SubscriptBox["x", SubscriptBox["k", "2"]], ",", "\[Ellipsis]", ",", SubscriptBox["x", SubscriptBox["k", "n"]]]], "]"]]]]]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> max </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> x </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> x </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> x </mi> <mi> n </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <msub> <mi> x </mi> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </msub> </mrow> <mo> - </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> n </mi> </munderover> <mrow> <mi> min </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> x </mi> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </msub> <mo> , </mo> <msub> <mi> x </mi> <msub> <mi> k </mi> <mn> 2 </mn> </msub> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 3 </mn> </msub> <mo> = </mo> <mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> n </mi> </munderover> <mrow> <mi> min </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> x </mi> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </msub> <mo> , </mo> <msub> <mi> x </mi> <msub> <mi> k </mi> <mn> 2 </mn> </msub> </msub> <mo> , </mo> <msub> <mi> x </mi> <msub> <mi> k </mi> <mn> 3 </mn> </msub> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mo> &#8230; </mo> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> n </mi> </munderover> <mrow> <mo> &#8230; </mo> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mi> j </mi> </msub> <mo> = </mo> <mrow> <msub> <mi> k </mi> <mrow> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> n </mi> </munderover> <mrow> <mi> min </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> x </mi> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </msub> <mo> , </mo> <msub> <mi> x </mi> <msub> <mi> k </mi> <mn> 2 </mn> </msub> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> x </mi> <msub> <mi> k </mi> <mi> j </mi> </msub> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mo> &#8230; </mo> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> n </mi> </munderover> <mrow> <mo> &#8230; </mo> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mi> n </mi> </msub> <mo> = </mo> <mrow> <msub> <mi> k </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> n </mi> </munderover> <mrow> <mi> min </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> x </mi> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </msub> <mo> , </mo> <msub> <mi> x </mi> <msub> <mi> k </mi> <mn> 2 </mn> </msub> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> x </mi> <msub> <mi> k </mi> <mi> n </mi> </msub> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <max /> <apply> <ci> Subscript </ci> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#8230; </ci> <apply> <ci> Subscript </ci> <ci> x </ci> <ci> n </ci> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <ci> Subscript </ci> <ci> x </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </bvar> <lowlimit> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <min /> <apply> <ci> Subscript </ci> <ci> x </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> x </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </bvar> <lowlimit> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </bvar> <lowlimit> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <min /> <apply> <ci> Subscript </ci> <ci> x </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> x </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> x </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#8230; </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </bvar> <lowlimit> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <ci> &#8230; </ci> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <ci> j </ci> </apply> </bvar> <lowlimit> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <apply> <plus /> <ci> j </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <min /> <apply> <ci> Subscript </ci> <ci> x </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> x </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#8230; </ci> <apply> <ci> Subscript </ci> <ci> x </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <ci> &#8230; </ci> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </bvar> <lowlimit> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <ci> &#8230; </ci> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <ci> n </ci> </apply> </bvar> <lowlimit> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <min /> <apply> <ci> Subscript </ci> <ci> x </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> x </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#8230; </ci> <apply> <ci> Subscript </ci> <ci> x </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Max", "[", RowBox[List[SubscriptBox["x_", "1"], ",", SubscriptBox["x_", "2"], ",", "\[Ellipsis]_", ",", SubscriptBox["x_", "n_"]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "1"]], "n"], SubscriptBox["xx", SubscriptBox["k", "1"]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "1"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", RowBox[List[SubscriptBox["k", "1"], "+", "1"]]]], "n"], RowBox[List["Min", "[", RowBox[List[SubscriptBox["xx", SubscriptBox["k", "1"]], ",", SubscriptBox["xx", SubscriptBox["k", "2"]]]], "]"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "1"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", RowBox[List[SubscriptBox["k", "1"], "+", "1"]]]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "3"], "=", RowBox[List[SubscriptBox["k", "2"], "+", "1"]]]], "n"], RowBox[List["Min", "[", RowBox[List[SubscriptBox["xx", SubscriptBox["k", "1"]], ",", SubscriptBox["xx", SubscriptBox["k", "2"]], ",", SubscriptBox["xx", SubscriptBox["k", "3"]]]], "]"]]]]]]]], "-", "\[Ellipsis]", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "1"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", RowBox[List[SubscriptBox["k", "1"], "+", "1"]]]], "n"], RowBox[List["\[Ellipsis]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "j"], "=", RowBox[List[SubscriptBox["k", RowBox[List["j", "-", "1"]]], "+", "1"]]]], "n"], RowBox[List["Min", "[", RowBox[List[SubscriptBox["xx", SubscriptBox["k", "1"]], ",", SubscriptBox["xx", SubscriptBox["k", "2"]], ",", "\[Ellipsis]", ",", SubscriptBox["xx", SubscriptBox["k", "j"]]]], "]"]]]]]]]]]]]], "+", "\[Ellipsis]", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "+", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "1"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", RowBox[List[SubscriptBox["k", "1"], "+", "1"]]]], "n"], RowBox[List["\[Ellipsis]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "n"], "=", RowBox[List[SubscriptBox["k", RowBox[List["n", "-", "1"]]], "+", "1"]]]], "n"], RowBox[List["Min", "[", RowBox[List[SubscriptBox["xx", SubscriptBox["k", "1"]], ",", SubscriptBox["xx", SubscriptBox["k", "2"]], ",", "\[Ellipsis]", ",", SubscriptBox["xx", SubscriptBox["k", "n"]]]], "]"]]]]]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29