| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/09.01.03.0005.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | EllipticTheta[1, -(Pi/2), q] == (-Sqrt[2/Pi]) InverseEllipticNomeQ[q]^(1/4) 
  Sqrt[EllipticK[InverseEllipticNomeQ[q]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", RowBox[List["-", FractionBox["\[Pi]", "2"]]], ",", "q"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", SqrtBox[FractionBox["2", "\[Pi]"]]]], SuperscriptBox[RowBox[List["InverseEllipticNomeQ", "[", "q", "]"]], RowBox[List["1", "/", "4"]]], " ", SqrtBox[RowBox[List["EllipticK", "[", RowBox[List["InverseEllipticNomeQ", "[", "q", "]"]], "]"]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msub>  <mi> ϑ </mi>  <mn> 1 </mn>  </msub>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mi> π </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mi> q </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> - </mo>  <msqrt>  <mfrac>  <mn> 2 </mn>  <mi> π </mi>  </mfrac>  </msqrt>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mrow>  <msup>  <semantics>  <mi> q </mi>  <annotation-xml encoding='MathML-Content'>  <ci> EllipticNomeQ </ci>  </annotation-xml>  </semantics>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mi> q </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </mroot>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msup>  <semantics>  <mi> q </mi>  <annotation-xml encoding='MathML-Content'>  <ci> EllipticNomeQ </ci>  </annotation-xml>  </semantics>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mi> q </mi>  <mo> ) </mo>  </mrow>  <mo> ) </mo>  </mrow>  </msqrt>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> EllipticTheta </ci>  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> q </ci>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <pi />  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> InverseEllipticNomeQ </ci>  <ci> q </ci>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <apply>  <ci> EllipticK </ci>  <apply>  <ci> InverseEllipticNomeQ </ci>  <ci> q </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", RowBox[List["-", FractionBox["\[Pi]", "2"]]], ",", "q_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", SqrtBox[FractionBox["2", "\[Pi]"]]]], " ", SuperscriptBox[RowBox[List["InverseEllipticNomeQ", "[", "q", "]"]], RowBox[List["1", "/", "4"]]], " ", SqrtBox[RowBox[List["EllipticK", "[", RowBox[List["InverseEllipticNomeQ", "[", "q", "]"]], "]"]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |