Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticTheta






Mathematica Notation

Traditional Notation









Elliptic Functions > EllipticTheta[1,z,q] > Series representations > q-series > Expansions at q==1





http://functions.wolfram.com/09.01.06.0039.01









  


  










Input Form





EllipticTheta[1, z, q] \[Proportional] (((2 I Sqrt[Pi])/Sqrt[q - 1]) (1 + (1/4) (q - 1) - (7/96) (q - 1)^2 + \[Ellipsis]) E^((Pi^2 + 4 z^2)/(4 Log[q])) (Sinh[(Pi z)/Log[q]] - E^((2 Pi^2)/Log[q]) Sinh[(3 Pi z)/Log[q]] + \[Ellipsis]))/ E^(I Pi Floor[-(Arg[q - 1]/(2 Pi))]) /; (q -> 1) && Abs[q] < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List["2", "\[ImaginaryI]", SqrtBox["\[Pi]"]]], SqrtBox[RowBox[List["q", "-", "1"]]]], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List["q", "-", "1"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["q", "-", "1"]], ")"]]]], "-", RowBox[List[FractionBox["7", "96"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["q", "-", "1"]], ")"]], "2"]]], "+", "\[Ellipsis]"]], ")"]], SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], RowBox[List["4", " ", RowBox[List["Log", "[", "q", "]"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Sinh", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["Log", "[", "q", "]"]]], "]"]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", SuperscriptBox["\[Pi]", "2"]]], RowBox[List["Log", "[", "q", "]"]]]], " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "z"]], RowBox[List["Log", "[", "q", "]"]]], "]"]]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["q", "\[Rule]", "1"]], ")"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", "q", "]"]], "<", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> &#977; </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> <msqrt> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mfrac> <mo> - </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 96 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> q </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 1 </cn> <ci> z </ci> <ci> q </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <pi /> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 7 <sep /> 96 </cn> <apply> <power /> <apply> <plus /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ln /> <ci> q </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <sinh /> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <apply> <ln /> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sinh /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <ci> z </ci> <apply> <power /> <apply> <ln /> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <apply> <lt /> <apply> <abs /> <ci> q </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z_", ",", "q_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["\[Pi]"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List["q", "-", "1"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["q", "-", "1"]], "4"], "-", RowBox[List[FractionBox["7", "96"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["q", "-", "1"]], ")"]], "2"]]], "+", "\[Ellipsis]"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], RowBox[List["4", " ", RowBox[List["Log", "[", "q", "]"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Sinh", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["Log", "[", "q", "]"]]], "]"]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", SuperscriptBox["\[Pi]", "2"]]], RowBox[List["Log", "[", "q", "]"]]]], " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "z"]], RowBox[List["Log", "[", "q", "]"]]], "]"]]]], "+", "\[Ellipsis]"]], ")"]]]], SqrtBox[RowBox[List["q", "-", "1"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["q", "\[Rule]", "1"]], ")"]], "&&", RowBox[List[RowBox[List["Abs", "[", "q", "]"]], "<", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02