Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticTheta






Mathematica Notation

Traditional Notation









Elliptic Functions > EllipticTheta[1,z,q] > Identities involving the group of functions > Differential identities





http://functions.wolfram.com/09.01.18.0170.01









  


  










Input Form





Derivative[0, 4, 0][EllipticTheta][3, 0, q]/EllipticTheta[3, 0, q] - 3 (Derivative[0, 2, 0][EllipticTheta][3, 0, q]^2/ EllipticTheta[3, 0, q]^2) == ((32 Subscript[\[Omega], 1]^4)/Pi^4) (Subscript[e, 1] - Subscript[e, 2]) (Subscript[e, 2] - Subscript[e, 3]) /; {Subscript[\[Omega], 1], Subscript[\[Omega], 3]} == WeierstrassHalfPeriods[{Subscript[g, 2], Subscript[g, 3]}] && Subscript[\[Omega], 2] == -Subscript[\[Omega], 1] - Subscript[\[Omega], 3] && q == Exp[Pi I (Subscript[\[Omega], 3]/Subscript[\[Omega], 1])] && Subscript[e, n] == WeierstrassP[Subscript[\[Omega], n], {Subscript[g, 2], Subscript[g, 3]}] && Element[n, {1, 2, 3}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["EllipticTheta", TagBox[RowBox[List["(", RowBox[List["0", ",", "4", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]]], "-", RowBox[List["3", FractionBox[SuperscriptBox[RowBox[List[SuperscriptBox["EllipticTheta", TagBox[RowBox[List["(", RowBox[List["0", ",", "2", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], "2"], SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], "2"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["32", SubsuperscriptBox["\[Omega]", "1", "4"]]], SuperscriptBox["\[Pi]", "4"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["e", "2"], "-", SubscriptBox["e", "3"]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassHalfPeriods", "[", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "]"]]]], "\[And]", RowBox[List[SubscriptBox["\[Omega]", "2"], "\[Equal]", RowBox[List[RowBox[List["-", SubscriptBox["\[Omega]", "1"]]], "-", SubscriptBox["\[Omega]", "3"]]]]], "\[And]", RowBox[List["q", "\[Equal]", RowBox[List["Exp", "[", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", FractionBox[SubscriptBox["\[Omega]", "3"], SubscriptBox["\[Omega]", "1"]]]], "]"]]]], "\[And]", RowBox[List[SubscriptBox["e", "n"], "\[Equal]", RowBox[List["WeierstrassP", "[", RowBox[List[SubscriptBox["\[Omega]", "n"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "\[And]", RowBox[List["n", "\[Element]", RowBox[List["{", RowBox[List["1", ",", "2", ",", "3"]], "}"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mfrac> <mrow> <msubsup> <mi> &#977; </mi> <mn> 3 </mn> <mrow> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <msub> <mi> &#977; </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mrow> <msubsup> <mi> &#977; </mi> <mn> 3 </mn> <mo> &#8243; </mo> </msubsup> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <msubsup> <mi> &#969; </mi> <mn> 1 </mn> <mn> 4 </mn> </msubsup> </mrow> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> e </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> e </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> &#969; </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> &#10869; </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mstyle scriptlevel='0'> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> <mstyle scriptlevel='0'> <mo> , </mo> </mstyle> <mrow> <mrow> <mstyle scriptlevel='0'> <mo> - </mo> </mstyle> <mrow> <mstyle scriptlevel='0'> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mstyle> <mo> ( </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> </mrow> <mstyle scriptlevel='0'> <mo> } </mo> </mstyle> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> q </mi> <mo> &#10869; </mo> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mfrac> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> e </mi> <mi> n </mi> </msub> <mo> &#10869; </mo> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> &#969; </mi> <mi> n </mi> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mrow> <mo> { </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> } </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#977; </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 0 </cn> <ci> q </ci> </apply> <apply> <power /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 3 </cn> <cn type='integer'> 0 </cn> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 2 </cn> </list> <apply> <ci> Subscript </ci> <ci> &#977; </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 0 </cn> <ci> q </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 3 </cn> <cn type='integer'> 0 </cn> <ci> q </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <list> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </list> </apply> <apply> <eq /> <ci> q </ci> <apply> <exp /> <apply> <times /> <pi /> <imaginaryi /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> e </ci> <ci> n </ci> </apply> <apply> <ci> WeierstrassP </ci> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> n </ci> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> <apply> <in /> <ci> n </ci> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 2 </cn> <cn type='integer'> 3 </cn> </list> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["EllipticTheta", TagBox[RowBox[List["(", RowBox[List["0", ",", "4", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["3", ",", "0", ",", "q_"]], "]"]], RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q_"]], "]"]]], "-", FractionBox[RowBox[List["3", " ", SuperscriptBox[RowBox[List[SuperscriptBox["EllipticTheta", TagBox[RowBox[List["(", RowBox[List["0", ",", "2", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["3", ",", "0", ",", "q_"]], "]"]], "2"]]], SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q_"]], "]"]], "2"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["32", " ", SubsuperscriptBox["\[Omega]", "1", "4"]]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["e", "2"], "-", SubscriptBox["e", "3"]]], ")"]]]], SuperscriptBox["\[Pi]", "4"]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassHalfPeriods", "[", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "]"]]]], "&&", RowBox[List[SubscriptBox["\[Omega]", "2"], "\[Equal]", RowBox[List[RowBox[List["-", SubscriptBox["\[Omega]", "1"]]], "-", SubscriptBox["\[Omega]", "3"]]]]], "&&", RowBox[List["q", "\[Equal]", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Omega]", "3"]]], SubscriptBox["\[Omega]", "1"]]]]], "&&", RowBox[List[SubscriptBox["e", "n"], "\[Equal]", RowBox[List["WeierstrassP", "[", RowBox[List[SubscriptBox["\[Omega]", "n"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "&&", RowBox[List["n", "\[Element]", RowBox[List["{", RowBox[List["1", ",", "2", ",", "3"]], "}"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29