
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/09.01.20.0009.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
D[EllipticTheta[1, z, q], q] ==
(-(1/(4 q))) (EllipticThetaPrime[1, z, q]^2/EllipticTheta[1, z, q]) +
(1/(4 q)) EllipticTheta[3, 0, q]^2 EllipticTheta[4, 0, q]^2
(EllipticTheta[2, z, q]^2/EllipticTheta[1, z, q]) +
(1/(q Pi^2)) EllipticTheta[1, z, q]
(WeierstrassZeta[1, WeierstrassInvariants[{1, Log[q]/(Pi I)}]] +
(Pi^2/12) (EllipticTheta[3, 0, q]^4 + EllipticTheta[4, 0, q]^4))
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", "q"], RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["4", " ", "q", " "]]]]], FractionBox[SuperscriptBox[RowBox[List["EllipticThetaPrime", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]], "2"], RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["4", " ", "q", " "]]], SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], "2"], SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "0", ",", "q"]], "]"]], "2"], FractionBox[SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "z", ",", "q"]], "]"]], "2"], RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["q", " ", SuperscriptBox["\[Pi]", "2"]]]], RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List["WeierstrassZeta", "[", RowBox[List["1", ",", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List["Log", "[", "q", "]"]], RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]]]]], "}"]], "]"]]]], "]"]], "+", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], "12"], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], "4"], "+", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "0", ",", "q"]], "]"]], "4"]]], ")"]]]]]], ")"]]]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <mo> ∂ </mo> <mrow> <msub> <mi> ϑ </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <mi> q </mi> </mrow> </mfrac> <mo>  </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> q </mi> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <msub> <mi> ϑ </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <msub> <mi> ϑ </mi> <mn> 4 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mfrac> <mrow> <msup> <mrow> <msub> <mi> ϑ </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mtext> </mtext> </mrow> <mrow> <msub> <mi> ϑ </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> - </mo> <mfrac> <msup> <mrow> <msubsup> <semantics> <mi> ϑ </mi> <annotation encoding='Mathematica'> TagBox["\[CurlyTheta]", EllipticThetaPrime] </annotation> </semantics> <mn> 1 </mn> <mo> ′ </mo> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> q </mi> <mo> ⁢ </mo> <mrow> <msub> <mi> ϑ </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> q </mi> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msub> <mi> ϑ </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mn> 12 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <msub> <mi> ϑ </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> + </mo> <msup> <mrow> <msub> <mi> ϑ </mi> <mn> 4 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <semantics> <mn> 1 </mn> <annotation encoding='Mathematica'> TagBox["1", Identity, Rule[Editable, True], Rule[Selectable, True]] </annotation> </semantics> <mo> ; </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mfrac> <mrow> <mo> ∂ </mo> <mrow> <msub> <mi> ϑ </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <mi> q </mi> </mrow> </mfrac> <mo>  </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> q </mi> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <msub> <mi> ϑ </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <msub> <mi> ϑ </mi> <mn> 4 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mfrac> <mrow> <msup> <mrow> <msub> <mi> ϑ </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mtext> </mtext> </mrow> <mrow> <msub> <mi> ϑ </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> - </mo> <mfrac> <msup> <mrow> <msubsup> <semantics> <mi> ϑ </mi> <annotation encoding='Mathematica'> TagBox["\[CurlyTheta]", EllipticThetaPrime] </annotation> </semantics> <mn> 1 </mn> <mo> ′ </mo> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> q </mi> <mo> ⁢ </mo> <mrow> <msub> <mi> ϑ </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> q </mi> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msub> <mi> ϑ </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mn> 12 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <msub> <mi> ϑ </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> + </mo> <msup> <mrow> <msub> <mi> ϑ </mi> <mn> 4 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <semantics> <mn> 1 </mn> <annotation encoding='Mathematica'> TagBox["1", Identity, Rule[Editable, True], Rule[Selectable, True]] </annotation> </semantics> <mo> ; </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["q_"]]], RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z_", ",", "q_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["EllipticThetaPrime", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]], "2"], RowBox[List[RowBox[List["(", RowBox[List["4", " ", "q"]], ")"]], " ", RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], "2"], " ", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "0", ",", "q"]], "]"]], "2"], " ", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "z", ",", "q"]], "]"]], "2"]]], RowBox[List[RowBox[List["(", RowBox[List["4", " ", "q"]], ")"]], " ", RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["WeierstrassZeta", "[", RowBox[List["1", ",", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List["Log", "[", "q", "]"]], RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]]]]], "}"]], "]"]]]], "]"]], "+", RowBox[List[FractionBox["1", "12"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], "4"], "+", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "0", ",", "q"]], "]"]], "4"]]], ")"]]]]]], ")"]]]], RowBox[List["q", " ", SuperscriptBox["\[Pi]", "2"]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|