  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/09.01.27.0010.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    EllipticTheta[1, z, q] == (Pi/Subscript[\[Omega], 1]) q^(1/4) 
   Exp[-((2 Subscript[\[Eta], 1] Subscript[\[Omega], 1] z^2)/Pi^2)] 
   Product[1 - q^(2 n), {n, 1, Infinity}]^3 WeierstrassSigma[
    (2 Subscript[\[Omega], 1] z)/Pi, {Subscript[g, 2], Subscript[g, 3]}] /; 
 {Subscript[\[Omega], 1], Subscript[\[Omega], 3]} == 
   WeierstrassHalfPeriods[{Subscript[g, 2], Subscript[g, 3]}] && 
  Subscript[\[Eta], 1] == WeierstrassZeta[Subscript[\[Omega], 1], 
    {Subscript[g, 2], Subscript[g, 3]}] && 
  q == Exp[Pi I (Subscript[\[Omega], 3]/Subscript[\[Omega], 1])] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]], "\[Equal]", RowBox[List[FractionBox["\[Pi]", SubscriptBox["\[Omega]", "1"]], " ", SuperscriptBox["q", RowBox[List["1", "/", "4"]]], " ", RowBox[List["Exp", "[", RowBox[List["-", FractionBox[RowBox[List["2", SubscriptBox["\[Eta]", "1"], " ", SubscriptBox["\[Omega]", "1"], " ", SuperscriptBox["z", "2"]]], SuperscriptBox["\[Pi]", "2"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["q", RowBox[List["2", "n"]]]]], ")"]]]], ")"]], "3"], " ", RowBox[List["WeierstrassSigma", "[", RowBox[List[FractionBox[RowBox[List["2", SubscriptBox["\[Omega]", "1"], "z"]], "\[Pi]"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassHalfPeriods", "[", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "]"]]]], "\[And]", RowBox[List[SubscriptBox["\[Eta]", "1"], "\[Equal]", RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "\[And]", RowBox[List["q", "\[Equal]", RowBox[List["Exp", "[", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", FractionBox[SubscriptBox["\[Omega]", "3"], SubscriptBox["\[Omega]", "1"]]]], "]"]]]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msub>  <mi> ϑ </mi>  <mn> 1 </mn>  </msub>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> , </mo>  <mi> q </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mi> π </mi>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  </mfrac>  <mo> ⁢ </mo>  <mroot>  <mi> q </mi>  <mn> 4 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mi> exp </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msub>  <mi> η </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <msup>  <mi> π </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> n </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> q </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mi> σ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mi> π </mi>  </mfrac>  <mo> ; </mo>  <msub>  <mi> g </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> , </mo>  <msub>  <mi> g </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Sigma]", "(", RowBox[List[RowBox[List[TagBox[FractionBox[RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"], " ", "z"]], "\[Pi]"], Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation>  </semantics>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> ω </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> } </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mo> { </mo>  <mrow>  <mrow>  <mstyle scriptlevel='0'>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  </mstyle>  <mo> ( </mo>  <mstyle scriptlevel='0'>  <mrow>  <msub>  <mi> g </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> g </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mstyle>  <mstyle scriptlevel='0'>  <mo> ) </mo>  </mstyle>  </mrow>  <mstyle scriptlevel='0'>  <mo> , </mo>  </mstyle>  <mrow>  <mstyle scriptlevel='0'>  <msub>  <mi> ω </mi>  <mn> 3 </mn>  </msub>  </mstyle>  <mo> ( </mo>  <mstyle scriptlevel='0'>  <mrow>  <msub>  <mi> g </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> g </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mstyle>  <mstyle scriptlevel='0'>  <mo> ) </mo>  </mstyle>  </mrow>  </mrow>  <mstyle scriptlevel='0'>  <mo> } </mo>  </mstyle>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> η </mi>  <mn> 1 </mn>  </msub>  <mo> ⩵ </mo>  <semantics>  <mrow>  <mi> ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  <mo> ; </mo>  <msub>  <mi> g </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> , </mo>  <msub>  <mi> g </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox[SubscriptBox["\[Omega]", "1"], Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> q </mi>  <mo> ⩵ </mo>  <mrow>  <mi> exp </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msub>  <mi> ω </mi>  <mn> 3 </mn>  </msub>  </mrow>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> EllipticTheta </ci>  <cn type='integer'> 1 </cn>  <ci> z </ci>  <ci> q </ci>  </apply>  <apply>  <times />  <apply>  <times />  <pi />  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> q </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <exp />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> Subscript </ci>  <ci> η </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <pi />  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <product />  <bvar>  <ci> n </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> q </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <ci> WeierstrassSigma </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 1 </cn>  </apply>  <ci> z </ci>  <apply>  <power />  <pi />  <cn type='integer'> -1 </cn>  </apply>  </apply>  <list>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 3 </cn>  </apply>  </list>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <eq />  <list>  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 3 </cn>  </apply>  </list>  <list>  <apply>  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </list>  </apply>  <apply>  <eq />  <apply>  <ci> Subscript </ci>  <ci> η </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> WeierstrassZeta </ci>  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 1 </cn>  </apply>  <list>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 3 </cn>  </apply>  </list>  </apply>  </apply>  <apply>  <eq />  <ci> q </ci>  <apply>  <exp />  <apply>  <times />  <pi />  <imaginaryi />  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z_", ",", "q_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", SuperscriptBox["q", RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["2", " ", SubscriptBox["\[Eta]", "1"], " ", SubscriptBox["\[Omega]", "1"], " ", SuperscriptBox["z", "2"]]], SuperscriptBox["\[Pi]", "2"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["q", RowBox[List["2", " ", "n"]]]]], ")"]]]], ")"]], "3"], " ", RowBox[List["WeierstrassSigma", "[", RowBox[List[FractionBox[RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"], " ", "z"]], "\[Pi]"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], SubscriptBox["\[Omega]", "1"]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassHalfPeriods", "[", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "]"]]]], "&&", RowBox[List[SubscriptBox["\[Eta]", "1"], "\[Equal]", RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "&&", RowBox[List["q", "\[Equal]", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Omega]", "3"]]], SubscriptBox["\[Omega]", "1"]]]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |