|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.02.03.0009.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EllipticTheta[2, -(Pi/6), E^(Pi I \[Tau])] ==
Sqrt[3] DedekindEta[3 \[Tau]] /; Im[\[Tau]] > 0 && Abs[Re[\[Tau]]] < 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox["Pi", "6"]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "\[Tau]"]]]]], "]"]], "\[Equal]", RowBox[List[SqrtBox["3"], RowBox[List["DedekindEta", "[", RowBox[List["3", "\[Tau]"]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Im", "[", "\[Tau]", "]"]], ">", "0"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Re", "[", "\[Tau]", "]"]], "]"]], "<", "1"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> ϑ </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> π </mi> <mn> 6 </mn> </mfrac> </mrow> <mo> , </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> τ </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <semantics> <mrow> <mi> η </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> τ </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Eta]", "(", TagBox[RowBox[List["3", " ", "\[Tau]"]], Identity, Rule[Editable, True]], ")"]], InterpretTemplate[Function[DedekindEta[Slot[1]]]]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> Im </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> τ </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> τ </mi> <mo> ) </mo> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <pi /> <imaginaryi /> <ci> τ </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> DedekindEta </ci> <apply> <times /> <cn type='integer'> 3 </cn> <ci> τ </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <imaginary /> <ci> τ </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <lt /> <apply> <abs /> <apply> <real /> <ci> τ </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox["\[Pi]", "6"]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "\[Tau]_"]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SqrtBox["3"], " ", RowBox[List["DedekindEta", "[", RowBox[List["3", " ", "\[Tau]"]], "]"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Im", "[", "\[Tau]", "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Re", "[", "\[Tau]", "]"]], "]"]], "<", "1"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|