Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticTheta






Mathematica Notation

Traditional Notation









Elliptic Functions > EllipticTheta[2,z,q] > Differentiation > Low-order differentiation > With respect to q





http://functions.wolfram.com/09.02.20.0009.01









  


  










Input Form





D[EllipticTheta[2, z, q], q] == (-(1/(4 q))) (EllipticThetaPrime[1, z, q]/EllipticTheta[1, z, q] - EllipticTheta[2, 0, q]^2 ((EllipticTheta[3, z, q] EllipticTheta[4, z, q])/(EllipticTheta[1, z, q] EllipticTheta[2, z, q])))^2 EllipticTheta[2, z, q] + (1/(4 q)) EllipticTheta[3, 0, q]^2 EllipticTheta[4, 0, q]^2 (EllipticTheta[1, z, q]^2/ EllipticTheta[2, z, q]) + (1/(q Pi^2)) EllipticTheta[2, z, q] (WeierstrassZeta[1, WeierstrassInvariants[{1, Log[q]/(Pi I)}]] + (Pi^2/12) (EllipticTheta[3, 0, q]^4 + EllipticTheta[4, 0, q]^4))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", "q"], RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "z", ",", "q"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["4", " ", "q"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["EllipticThetaPrime", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]], RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]]], "-", RowBox[List[SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "0", ",", "q"]], "]"]], "2"], FractionBox[RowBox[List[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "z", ",", "q"]], "]"]], RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "z", ",", "q"]], "]"]]]], RowBox[List[RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]], RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "z", ",", "q"]], "]"]]]]]]]]], ")"]], "2"], RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "z", ",", "q"]], "]"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["4", " ", "q"]]], SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], "2"], SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "0", ",", "q"]], "]"]], "2"], FractionBox[SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]], "2"], RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "z", ",", "q"]], "]"]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["q", " ", SuperscriptBox["\[Pi]", "2"]]]], RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "z", ",", "q"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List["WeierstrassZeta", "[", RowBox[List["1", ",", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List["Log", "[", "q", "]"]], RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]]]]], "}"]], "]"]]]], "]"]], "+", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], "12"], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], "4"], "+", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "0", ",", "q"]], "]"]], "4"]]], ")"]]]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <mo> &#8706; </mo> <mrow> <msub> <mi> &#977; </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <mi> q </mi> </mrow> </mfrac> <mo> &#63449; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> &#977; </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msubsup> <semantics> <mi> &#977; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[CurlyTheta]&quot;, EllipticThetaPrime] </annotation> </semantics> <mn> 1 </mn> <mo> &#8242; </mo> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <msub> <mi> &#977; </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> - </mo> <mrow> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mfrac> <mrow> <mtext> </mtext> <mrow> <mrow> <msub> <mi> &#977; </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> &#977; </mi> <mn> 4 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <msub> <mi> &#977; </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> &#977; </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <mn> 1 </mn> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 4 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <msub> <mi> &#977; </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> q </mi> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <mi> &#977; </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mn> 12 </mn> </mfrac> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> + </mo> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 4 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> ; </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;1&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]], &quot;;&quot;, RowBox[List[SubscriptBox[&quot;g&quot;, &quot;2&quot;], &quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;,&quot;, FractionBox[RowBox[List[&quot;log&quot;, &quot;(&quot;, &quot;q&quot;, &quot;)&quot;]], RowBox[List[&quot;\[Pi]&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;]]]]], &quot;)&quot;]]]], &quot;,&quot;, RowBox[List[SubscriptBox[&quot;g&quot;, &quot;3&quot;], &quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;,&quot;, FractionBox[RowBox[List[&quot;log&quot;, &quot;(&quot;, &quot;q&quot;, &quot;)&quot;]], RowBox[List[&quot;\[Pi]&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;]]]]], &quot;)&quot;]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]], Rule[Editable, True], Rule[Selectable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mfrac> <mrow> <mo> &#8706; </mo> <mrow> <msub> <mi> &#977; </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <mi> q </mi> </mrow> </mfrac> <mo> &#63449; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> &#977; </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msubsup> <semantics> <mi> &#977; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[CurlyTheta]&quot;, EllipticThetaPrime] </annotation> </semantics> <mn> 1 </mn> <mo> &#8242; </mo> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <msub> <mi> &#977; </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> - </mo> <mrow> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mfrac> <mrow> <mtext> </mtext> <mrow> <mrow> <msub> <mi> &#977; </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> &#977; </mi> <mn> 4 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <msub> <mi> &#977; </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> &#977; </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <mn> 1 </mn> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 4 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <msub> <mi> &#977; </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> q </mi> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <mi> &#977; </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mn> 12 </mn> </mfrac> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> + </mo> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 4 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> ; </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;1&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]], &quot;;&quot;, RowBox[List[SubscriptBox[&quot;g&quot;, &quot;2&quot;], &quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;,&quot;, FractionBox[RowBox[List[&quot;log&quot;, &quot;(&quot;, &quot;q&quot;, &quot;)&quot;]], RowBox[List[&quot;\[Pi]&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;]]]]], &quot;)&quot;]]]], &quot;,&quot;, RowBox[List[SubscriptBox[&quot;g&quot;, &quot;3&quot;], &quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;,&quot;, FractionBox[RowBox[List[&quot;log&quot;, &quot;(&quot;, &quot;q&quot;, &quot;)&quot;]], RowBox[List[&quot;\[Pi]&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;]]]]], &quot;)&quot;]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]], Rule[Editable, True], Rule[Selectable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["q_"]]], RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "z_", ",", "q_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["EllipticThetaPrime", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]], RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]]], "-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "0", ",", "q"]], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "z", ",", "q"]], "]"]], " ", RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "z", ",", "q"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]], " ", RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "z", ",", "q"]], "]"]]]]]]], ")"]], "2"], " ", RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "z", ",", "q"]], "]"]]]], RowBox[List["4", " ", "q"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], "2"], " ", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "0", ",", "q"]], "]"]], "2"], " ", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", "z", ",", "q"]], "]"]], "2"]]], RowBox[List[RowBox[List["(", RowBox[List["4", " ", "q"]], ")"]], " ", RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "z", ",", "q"]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "z", ",", "q"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["WeierstrassZeta", "[", RowBox[List["1", ",", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List["Log", "[", "q", "]"]], RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]]]]], "}"]], "]"]]]], "]"]], "+", RowBox[List[FractionBox["1", "12"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], "4"], "+", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "0", ",", "q"]], "]"]], "4"]]], ")"]]]]]], ")"]]]], RowBox[List["q", " ", SuperscriptBox["\[Pi]", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02