Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticThetaPrime






Mathematica Notation

Traditional Notation









Elliptic Functions > EllipticThetaPrime[4,z,q] > Series representations > Other series representations





http://functions.wolfram.com/09.08.06.0013.01









  


  










Input Form





EllipticThetaPrime[4, z, q] == (-((2 Sqrt[Pi])/(-Log[q])^(3/2))) E^((Pi^2 + 4 z^2)/(4 Log[q])) (2 z Sum[E^((k (k + 1) Pi^2)/Log[q]) Cosh[((2 k + 1) Pi z)/Log[q]], {k, 0, Infinity}] + Pi Sum[E^((k (k + 1) Pi^2)/Log[q]) (2 k + 1) Sinh[((2 k + 1) Pi z)/Log[q]], {k, 0, Infinity}])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["EllipticThetaPrime", "[", RowBox[List["4", ",", "z", ",", "q"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2", " ", SqrtBox["\[Pi]"]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", RowBox[List["Log", "[", "q", "]"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], RowBox[List["4", " ", RowBox[List["Log", "[", "q", "]"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], " ", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["k", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], SuperscriptBox["\[Pi]", "2"]]], RowBox[List["Log", "[", "q", "]"]]]], RowBox[List["Cosh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], "\[Pi]", " ", "z"]], RowBox[List["Log", "[", "q", "]"]]], "]"]]]]]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["k", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], SuperscriptBox["\[Pi]", "2"]]], RowBox[List["Log", "[", "q", "]"]]]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], "\[Pi]", " ", "z"]], RowBox[List["Log", "[", "q", "]"]]], "]"]]]]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <semantics> <mi> &#977; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[CurlyTheta]&quot;, EllipticThetaPrime] </annotation> </semantics> <mn> 4 </mn> <mo> &#8242; </mo> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> EllipticThetaPrime </ci> <cn type='integer'> 4 </cn> <ci> z </ci> <ci> q </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> q </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ln /> <ci> q </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> k </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <cosh /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <pi /> <ci> z </ci> <apply> <power /> <apply> <ln /> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <pi /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> k </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <sinh /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <pi /> <ci> z </ci> <apply> <power /> <apply> <ln /> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticThetaPrime", "[", RowBox[List["4", ",", "z_", ",", "q_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SqrtBox["\[Pi]"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], RowBox[List["4", " ", RowBox[List["Log", "[", "q", "]"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["k", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", SuperscriptBox["\[Pi]", "2"]]], RowBox[List["Log", "[", "q", "]"]]]], " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", "\[Pi]", " ", "z"]], RowBox[List["Log", "[", "q", "]"]]], "]"]]]]]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["k", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", SuperscriptBox["\[Pi]", "2"]]], RowBox[List["Log", "[", "q", "]"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", "\[Pi]", " ", "z"]], RowBox[List["Log", "[", "q", "]"]]], "]"]]]]]]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", RowBox[List["Log", "[", "q", "]"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02