|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.08.06.0004.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EllipticThetaPrime[4, z, q] == (-((2 I^(3/2))/\[Tau]^(3/2)))
Sum[(z/Pi + n - 1/2) Exp[(-((Pi I)/\[Tau])) (z/Pi + n - 1/2)^2],
{n, -Infinity, Infinity}] /; q == E^(I Pi \[Tau])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticThetaPrime", "[", RowBox[List["4", ",", "z", ",", "q"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2", SuperscriptBox["\[ImaginaryI]", RowBox[List["3", "/", "2"]]]]], SuperscriptBox["\[Tau]", RowBox[List["3", "/", "2"]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[FractionBox["z", "\[Pi]"], "+", "n", "-", FractionBox["1", "2"]]], ")"]], " ", RowBox[List["Exp", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "\[Tau]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["z", "\[Pi]"], "+", "n", "-", FractionBox["1", "2"]]], ")"]], "2"]]], "]"]]]]]]]]]], "/;", RowBox[List["q", "\[Equal]", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Tau]"]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> ϑ </mi> <mn> 4 </mn> <mo> ′ </mo> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ⅈ </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <msup> <mi> τ </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> n </mi> <mo> = </mo> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mi> z </mi> <mi> π </mi> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mi> τ </mi> </mfrac> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> z </mi> <mi> π </mi> </mfrac> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> q </mi> <mo> ⩵ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> τ </mi> </mrow> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <apply> <ci> Subscript </ci> <ci> ϑ </ci> <cn type='integer'> 4 </cn> </apply> </apply> <ci> z </ci> <ci> q </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <imaginaryi /> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> τ </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> n </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <ci> z </ci> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <exp /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <ci> τ </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <ci> q </ci> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <ci> τ </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticThetaPrime", "[", RowBox[List["4", ",", "z_", ",", "q_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["\[ImaginaryI]", RowBox[List["3", "/", "2"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[FractionBox["z", "\[Pi]"], "+", "n", "-", FractionBox["1", "2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["z", "\[Pi]"], "+", "n", "-", FractionBox["1", "2"]]], ")"]], "2"]]], "\[Tau]"]]]]]]]]]], SuperscriptBox["\[Tau]", RowBox[List["3", "/", "2"]]]]]], "/;", RowBox[List["q", "\[Equal]", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Tau]"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|