|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.38.03.0014.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InverseJacobiCN[-Infinity, m] == (I/Sqrt[m]) EllipticK[(m - 1)/m] +
(2/Sqrt[1 - m]) EllipticK[m/(m - 1)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["InverseJacobiCN", "[", RowBox[List[RowBox[List["-", "\[Infinity]"]], ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["\[ImaginaryI]", SqrtBox["m"]], RowBox[List["EllipticK", "[", FractionBox[RowBox[List["m", "-", "1"]], "m"], "]"]]]], "+", RowBox[List[FractionBox["2", RowBox[List[SqrtBox[RowBox[List["1", "-", "m"]]], " "]]], RowBox[List["EllipticK", "[", FractionBox["m", RowBox[List["m", "-", "1"]]], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> cn </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mn> 2 </mn> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> m </mi> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mi> ⅈ </mi> <msqrt> <mi> m </mi> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> InverseJacobiCN </ci> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> EllipticK </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> EllipticK </ci> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiCN", "[", RowBox[List[RowBox[List["-", "\[Infinity]"]], ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List["m", "-", "1"]], "m"], "]"]]]], SqrtBox["m"]], "+", FractionBox[RowBox[List["2", " ", RowBox[List["EllipticK", "[", FractionBox["m", RowBox[List["m", "-", "1"]]], "]"]]]], SqrtBox[RowBox[List["1", "-", "m"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|