|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.38.04.0009.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BranchPoints[InverseJacobiCN[z, m], z] == {0, 1, -1, Sqrt[(-1 + m)/m],
-Sqrt[(-1 + m)/m], ComplexInfinity}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["BranchPoints", "[", RowBox[List[RowBox[List["InverseJacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "1", ",", RowBox[List["-", "1"]], ",", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]], "m"]], ",", RowBox[List["-", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]], "m"]]]], ",", " ", "ComplexInfinity"]], "}"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> ℬ𝒫 </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <msup> <mi> cn </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <msqrt> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </mfrac> </msqrt> <mo> , </mo> <mrow> <mo> - </mo> <msqrt> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </mfrac> </msqrt> </mrow> <mo> , </mo> <mover> <mi> ∞ </mi> <mo> ~ </mo> </mover> </mrow> <mo> } </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> ℬ𝒫 </ci> <ci> z </ci> </apply> <apply> <ci> InverseJacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 1 </cn> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> OverTilde </ci> <infinity /> </apply> </list> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BranchPoints", "[", RowBox[List[RowBox[List["InverseJacobiCN", "[", RowBox[List["z_", ",", "m_"]], "]"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["{", RowBox[List["0", ",", "1", ",", RowBox[List["-", "1"]], ",", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]], "m"]], ",", RowBox[List["-", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]], "m"]]]], ",", "ComplexInfinity"]], "}"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|