Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











InverseJacobiCN






Mathematica Notation

Traditional Notation









Elliptic Functions > InverseJacobiCN[z,m] > Series representations > Generalized power series > Expansions at generic point m==m0 > For the function itself





http://functions.wolfram.com/09.38.06.0017.01









  


  










Input Form





InverseJacobiCN[z, m] == Sum[(((-1)^k Sqrt[Pi] (1 - z^2)^(k + 1/2))/(k! (1 + 2 k) Gamma[1/2 - k])) AppellF1[1/2 + k, 1/2, 1/2 + k, 3/2 + k, 1 - z^2, Subscript[m, 0] (1 - z^2)] (m - Subscript[m, 0])^k, {k, 0, Infinity}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["InverseJacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["k", "+", FractionBox["1", "2"]]]]]], RowBox[List[RowBox[List["k", "!"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "k"]], "]"]]]]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "k"]], ",", FractionBox["1", "2"], ",", RowBox[List[FractionBox["1", "2"], "+", "k"]], ",", RowBox[List[FractionBox["3", "2"], "+", "k"]], ",", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ",", RowBox[List[SubscriptBox["m", "0"], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]]]]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", SubscriptBox["m", "0"]]], ")"]], "k"]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> cn </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> , </mo> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> InverseJacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> AppellF1 </ci> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiCN", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["k", "+", FractionBox["1", "2"]]]]]], ")"]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "k"]], ",", FractionBox["1", "2"], ",", RowBox[List[FractionBox["1", "2"], "+", "k"]], ",", RowBox[List[FractionBox["3", "2"], "+", "k"]], ",", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ",", RowBox[List[SubscriptBox["mm", "0"], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", SubscriptBox["mm", "0"]]], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "k"]], "]"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02