Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











InverseJacobiCN






Mathematica Notation

Traditional Notation









Elliptic Functions > InverseJacobiCN[z,m] > Series representations > Generalized power series > Expansions at m==0





http://functions.wolfram.com/09.38.06.0006.01









  


  










Input Form





InverseJacobiCN[z, m] == EllipticK[m] - z HypergeometricPFQ[{{1/2}, {1/2, 1/2}, {1, 1/2}}, {{1, 3/2}, {}, {}}, (-m) z^2, z^2] - ((m z)/2) HypergeometricPFQ[{{3/2, 3/2}, {1/2}, {1}}, {{2}, {3/2}, {3/2}}, (-m) z^2, m]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["InverseJacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "-", RowBox[List["z", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", FractionBox["1", "2"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox["z", "2"]]], ",", SuperscriptBox["z", "2"]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List["m", " ", "z"]], "2"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", "1", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "2", "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]]]], "}"]], ",", RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox["z", "2"]]], ",", "m"]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> cn </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mn> 0 </mn> <mo> &#8290; </mo> <mn> 0 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 2 </mn> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> , </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> </mrow> </mtd> </mtr> </mtable> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> , </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> cn </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> z </ms> <ms> &#10072; </ms> <ms> m </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> &#10869; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> K </ms> <ms> ( </ms> <ms> m </ms> <ms> ) </ms> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> z </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <ms> F </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> 0 </ms> <ms> 0 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> 2 </ms> <ms> 2 </ms> </list> </apply> </apply> <ms> [ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> GridBox </ci> <list> <list> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> <ms> ; </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> <ms> ; </ms> <ms> 1 </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> <ms> ; </ms> </list> </apply> </list> </apply> </apply> </list> <list> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 3 </ms> <ms> 2 </ms> </apply> <ms> ; </ms> </list> </apply> <ms> ; </ms> </list> </apply> <ms> ; </ms> </list> </apply> </list> </apply> </list> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> </list> </apply> </list> </apply> <ms> , </ms> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> <ms> ] </ms> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> z </ms> </list> </apply> <ms> 2 </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <ms> F </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> 1 </ms> <ms> 1 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> 1 </ms> <ms> 1 </ms> </list> </apply> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> GridBox </ci> <list> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 3 </ms> <ms> 2 </ms> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 3 </ms> <ms> 2 </ms> </apply> <ms> ; </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> <ms> ; </ms> <ms> 1 </ms> <ms> ; </ms> </list> </apply> </list> </apply> </list> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> ; </ms> <apply> <ci> FractionBox </ci> <ms> 3 </ms> <ms> 2 </ms> </apply> <ms> ; </ms> <apply> <ci> FractionBox </ci> <ms> 3 </ms> <ms> 2 </ms> </apply> <ms> ; </ms> </list> </apply> </list> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> </list> </apply> </list> </apply> <ms> , </ms> <ms> m </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiCN", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "-", RowBox[List["z", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", FractionBox["1", "2"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox["z", "2"]]], ",", SuperscriptBox["z", "2"]]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["m", " ", "z"]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", "1", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "2", "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]]]], "}"]], ",", RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox["z", "2"]]], ",", "m"]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29