|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.38.06.0008.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InverseJacobiCN[z, m] == EllipticK[m] - (z/Sqrt[1 - m])
HypergeometricPFQ[{{1/2}, {1/2}, {1/2}}, {{3/2}, {}, {}}, (m/(m - 1)) z^2,
z^2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["InverseJacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "-", RowBox[List[FractionBox["z", SqrtBox[RowBox[List["1", "-", "m"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["3", "2"], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List[FractionBox["m", RowBox[List["m", "-", "1"]]], " ", SuperscriptBox["z", "2"]]], ",", SuperscriptBox["z", "2"]]], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> cn </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> <mo> ⩵ </mo> <mrow> <mrow> <mi> K </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 1 </mn> <mo> ⁢ </mo> <mn> 0 </mn> <mo> ⁢ </mo> <mn> 0 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> ⁢ </mo> <mn> 1 </mn> <mo> ⁢ </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> </mrow> </mtd> </mtr> </mtable> <mo> ⁢ </mo> <mfrac> <mrow> <mi> m </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> , </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> InverseJacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <ci> K </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> F </ci> <apply> <times /> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <list> <list> <apply> <ci> CompoundExpression </ci> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <ci> Null </ci> </apply> </list> <list> <apply> <ci> CompoundExpression </ci> <apply> <ci> CompoundExpression </ci> <apply> <ci> CompoundExpression </ci> <cn type='rational'> 3 <sep /> 2 </cn> <ci> Null </ci> </apply> <ci> Null </ci> </apply> <ci> Null </ci> </apply> </list> </list> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiCN", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "-", FractionBox[RowBox[List["z", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["3", "2"], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", FractionBox[RowBox[List["m", " ", SuperscriptBox["z", "2"]]], RowBox[List["m", "-", "1"]]], ",", SuperscriptBox["z", "2"]]], "]"]]]], SqrtBox[RowBox[List["1", "-", "m"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|