  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/09.38.20.0003.02
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    D[InverseJacobiCN[z, m], {z, 2}] == 
 (z (1 + 2 m (-1 + z^2)) JacobiDS[InverseJacobiCN[z, m], m])/
  ((-1 + z^2) (1 + m (-1 + z^2))^2) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "2"]], "}"]]], RowBox[List["InverseJacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]]]], "\[Equal]", FractionBox[RowBox[List["z", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]]]]]], ")"]], " ", RowBox[List["JacobiDS", "[", RowBox[List[RowBox[List["InverseJacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]]]]]], ")"]], "2"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mfrac>  <mrow>  <msup>  <mo> ∂ </mo>  <mn> 2 </mn>  </msup>  <mrow>  <msup>  <mi> cn </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mo> ∂ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </mfrac>  <mo>  </mo>  <mfrac>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> m </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> ds </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> cn </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> m </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mfrac>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> InverseJacobiCN </ci>  <ci> z </ci>  <ci> m </ci>  </apply>  </apply>  <apply>  <times />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> m </ci>  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> JacobiDS </ci>  <apply>  <ci> InverseJacobiCN </ci>  <ci> z </ci>  <ci> m </ci>  </apply>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> m </ci>  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "2"]], "}"]]]]], RowBox[List["InverseJacobiCN", "[", RowBox[List["z_", ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["z", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]]]]]], ")"]], " ", RowBox[List["JacobiDS", "[", RowBox[List[RowBox[List["InverseJacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]]]]]], ")"]], "2"]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |