Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











InverseJacobiCN






Mathematica Notation

Traditional Notation









Elliptic Functions > InverseJacobiCN[z,m] > Differentiation > Low-order differentiation > With respect to m





http://functions.wolfram.com/09.38.20.0005.01









  


  










Input Form





D[InverseJacobiCN[z, m], m] == (1/(2 (m - 1))) ((z Sqrt[1 - z^2])/Sqrt[1 + m (z^2 - 1)] + (I/Sqrt[m]) (EllipticE[I ArcSinh[(Sqrt[m] z)/Sqrt[1 - m]], (m - 1)/m] - EllipticE[I ArcSinh[Sqrt[m]/Sqrt[1 - m]], (m - 1)/m] + EllipticF[I ArcSinh[Sqrt[m]/Sqrt[1 - m]], (m - 1)/m] - EllipticF[I ArcSinh[(Sqrt[m] z)/Sqrt[1 - m]], (m - 1)/m])) /; -1 < z < 1 && m < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", "m"], RowBox[List["InverseJacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", RowBox[List["(", " ", RowBox[List["m", "-", "1"]], ")"]]]]], RowBox[List["(", RowBox[List[FractionBox[RowBox[List["z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["m", " ", RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], ")"]]]]]]]], "+", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " "]], SqrtBox["m"]], RowBox[List["(", RowBox[List[RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[RowBox[List[SqrtBox["m"], " ", "z"]], SqrtBox[RowBox[List["1", "-", "m"]]]], "]"]]]], ",", FractionBox[RowBox[List["m", "-", "1"]], "m"]]], "]"]], "-", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SqrtBox["m"], SqrtBox[RowBox[List["1", "-", "m"]]]], "]"]]]], ",", FractionBox[RowBox[List["m", "-", "1"]], "m"]]], "]"]], "+", " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SqrtBox["m"], SqrtBox[RowBox[List["1", "-", "m"]]]], "]"]]]], ",", FractionBox[RowBox[List["m", "-", "1"]], "m"]]], "]"]], "-", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[RowBox[List[SqrtBox["m"], " ", "z"]], SqrtBox[RowBox[List["1", "-", "m"]]]], "]"]]]], ",", FractionBox[RowBox[List["m", "-", "1"]], "m"]]], "]"]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "<", "z", "<", "1"]], "\[And]", RowBox[List["m", "<", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <mo> &#8706; </mo> <mrow> <msup> <mi> cn </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <mi> m </mi> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> + </mo> <mrow> <mfrac> <mi> &#8520; </mi> <msqrt> <mi> m </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mi> m </mi> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mi> m </mi> </msqrt> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mi> m </mi> </msqrt> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mi> m </mi> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> &lt; </mo> <mi> z </mi> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> m </ci> </bvar> <apply> <ci> InverseJacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <ci> m </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> EllipticE </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> EllipticE </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> EllipticF </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> EllipticF </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <cn type='integer'> -1 </cn> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <lt /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["m_"]]], RowBox[List["InverseJacobiCN", "[", RowBox[List["z_", ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[FractionBox[RowBox[List["z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["m", " ", RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], ")"]]]]]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[RowBox[List[SqrtBox["m"], " ", "z"]], SqrtBox[RowBox[List["1", "-", "m"]]]], "]"]]]], ",", FractionBox[RowBox[List["m", "-", "1"]], "m"]]], "]"]], "-", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SqrtBox["m"], SqrtBox[RowBox[List["1", "-", "m"]]]], "]"]]]], ",", FractionBox[RowBox[List["m", "-", "1"]], "m"]]], "]"]], "+", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SqrtBox["m"], SqrtBox[RowBox[List["1", "-", "m"]]]], "]"]]]], ",", FractionBox[RowBox[List["m", "-", "1"]], "m"]]], "]"]], "-", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[RowBox[List[SqrtBox["m"], " ", "z"]], SqrtBox[RowBox[List["1", "-", "m"]]]], "]"]]]], ",", FractionBox[RowBox[List["m", "-", "1"]], "m"]]], "]"]]]], ")"]]]], SqrtBox["m"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "<", "z", "<", "1"]], "&&", RowBox[List["m", "<", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29