  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/09.40.02.0002.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    InverseJacobiDC[z, m] == Integrate[1/(Sqrt[t^2 - 1] Sqrt[t^2 - m]), 
   {t, 1, z}] /; Element[z, Reals] && z^2 > 1 && z^2 - m > 0 && m < 1 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[SubsuperscriptBox["\[Integral]", "1", "z"], RowBox[List[FractionBox["1", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["t", "2"], "-", "1"]]], " ", SqrtBox[RowBox[List[SuperscriptBox["t", "2"], "-", "m"]]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]], "/;", " ", RowBox[List[RowBox[List["z", "\[Element]", "Reals"]], "\[And]", RowBox[List[SuperscriptBox["z", "2"], ">", "1"]], "\[And]", RowBox[List[RowBox[List[SuperscriptBox["z", "2"], "-", "m"]], ">", "0"]], "\[And]", RowBox[List["m", "<", "1"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msup>  <mi> dc </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <msubsup>  <mo> ∫ </mo>  <mn> 1 </mn>  <mi> z </mi>  </msubsup>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> t </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msup>  <mi> t </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mi> m </mi>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> t </mi>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> ∈ </mo>  <semantics>  <mi> ℝ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[Reals]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> > </mo>  <mn> 1 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> m </mi>  <mo> < </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> InverseJacobiDC </ci>  <ci> z </ci>  <ci> m </ci>  </apply>  <apply>  <int />  <bvar>  <ci> t </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <ci> z </ci>  </uplimit>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> t </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> t </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <in />  <ci> z </ci>  <reals />  </apply>  <apply>  <gt />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <gt />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <lt />  <ci> m </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiDC", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "1", "z"], RowBox[List[FractionBox["1", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["t", "2"], "-", "1"]]], " ", SqrtBox[RowBox[List[SuperscriptBox["t", "2"], "-", "m"]]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "/;", RowBox[List[RowBox[List["z", "\[Element]", "Reals"]], "&&", RowBox[List[SuperscriptBox["z", "2"], ">", "1"]], "&&", RowBox[List[RowBox[List[SuperscriptBox["z", "2"], "-", "m"]], ">", "0"]], "&&", RowBox[List["m", "<", "1"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |