Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











InverseJacobiDC






Mathematica Notation

Traditional Notation









Elliptic Functions > InverseJacobiDC[z,m] > Differentiation > Symbolic differentiation > With respect to z





http://functions.wolfram.com/09.40.20.0013.01









  


  










Input Form





D[InverseJacobiDC[z, m], {z, n}] == KroneckerDelta[n] InverseJacobiDC[z, m] - (JacobiSN[InverseJacobiDC[z, m], m]/(-1 + z^2)) Sum[(((-1)^(j - 1) Pochhammer[1 - n, 2 (n - j) - 2])/ ((n - j - 1)! (2 z)^(n - 2 j - 1))) Sum[(Binomial[j, k] Pochhammer[1/2, k] Pochhammer[1/2, j - k] (z^2 - m)^(-j + k))/(z^2 - 1)^k, {k, 0, j}], {j, 0, n - 1}] /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "n"]], "}"]]], RowBox[List["InverseJacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["KroneckerDelta", "[", "n", "]"]], RowBox[List["InverseJacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["InverseJacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "-", "1"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "n"]], ",", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["n", "-", "j"]], ")"]]]], "-", "2"]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "j", "-", "1"]], ")"]], "!"]], SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "z"]], ")"]], RowBox[List["n", "-", RowBox[List["2", " ", "j"]], "-", "1"]]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "j"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["j", ",", "k"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["j", "-", "k"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], ")"]], RowBox[List["-", "k"]]], SuperscriptBox[RowBox[List["(", " ", RowBox[List[SuperscriptBox["z", "2"], "-", "m"]], ")"]], RowBox[List[RowBox[List["-", "j"]], "+", "k"]]]]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <mrow> <msup> <mi> dc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mrow> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mi> n </mi> </msub> <mo> &#8290; </mo> <mrow> <msup> <mi> dc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> dc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;n&quot;]], &quot;)&quot;]], RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;j&quot;]], &quot;)&quot;]]]], &quot;-&quot;, &quot;2&quot;]]], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> j </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], RowBox[List[&quot;j&quot;, &quot;-&quot;, &quot;k&quot;]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <ci> InverseJacobiDC </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> KroneckerDelta </ci> <ci> n </ci> </apply> <apply> <ci> InverseJacobiDC </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <ci> JacobiSN </ci> <apply> <ci> InverseJacobiDC </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> j </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> j </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> j </ci> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "n_"]], "}"]]]]], RowBox[List["InverseJacobiDC", "[", RowBox[List["z_", ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["KroneckerDelta", "[", "n", "]"]], " ", RowBox[List["InverseJacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]]]], "-", FractionBox[RowBox[List[RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["InverseJacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "-", "1"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "n"]], ",", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["n", "-", "j"]], ")"]]]], "-", "2"]]]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "j"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["j", ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["j", "-", "k"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], ")"]], RowBox[List["-", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "m"]], ")"]], RowBox[List[RowBox[List["-", "j"]], "+", "k"]]]]]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "j", "-", "1"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "z"]], ")"]], RowBox[List["n", "-", RowBox[List["2", " ", "j"]], "-", "1"]]]]]]]]]], RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02