|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.40.21.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[InverseJacobiDC[z, m], z] == InverseJacobiDC[z, m] z -
Log[JacobiNC[InverseJacobiDC[z, m], m] + JacobiSC[InverseJacobiDC[z, m], m]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["InverseJacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["InverseJacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]], " ", "z"]], "-", RowBox[List["Log", "[", RowBox[List[RowBox[List["JacobiNC", "[", RowBox[List[RowBox[List["InverseJacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], " ", "+", RowBox[List["JacobiSC", "[", RowBox[List[RowBox[List["InverseJacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> dc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mrow> <msup> <mi> dc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> nc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> dc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> sc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> dc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <ci> InverseJacobiDC </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> InverseJacobiDC </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <apply> <ci> JacobiNC </ci> <apply> <ci> InverseJacobiDC </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiSC </ci> <apply> <ci> InverseJacobiDC </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["InverseJacobiDC", "[", RowBox[List["z_", ",", "m_"]], "]"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["InverseJacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]], " ", "z"]], "-", RowBox[List["Log", "[", RowBox[List[RowBox[List["JacobiNC", "[", RowBox[List[RowBox[List["InverseJacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], "+", RowBox[List["JacobiSC", "[", RowBox[List[RowBox[List["InverseJacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], "]"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|